Library UniMath.MoreFoundations.WeakEquivalences

Weak equivalences


Require Import UniMath.Foundations.PartA.

Contents

  • Direct products
If x = y, then x = z if and only if y = z by transitivity.
Definition transitive_paths_weq {X : UU} {x y z : X} :
  x = y (x = z y = z).
Proof.
  intro xeqy.
  use weq_iso.
  - intro xeqz.
    exact (!xeqy @ xeqz).
  - intro yeqz.
    exact (xeqy @ yeqz).
  - intro xeqz.
    refine (path_assoc _ _ _ @ _).
    refine (maponpaths (λ p, p @ xeqz) (pathsinv0r xeqy) @ _).
    reflexivity.
  - intro yeqz.
    refine (path_assoc _ _ _ @ _).
    refine (maponpaths (λ p, p @ yeqz) (pathsinv0l xeqy) @ _).
    reflexivity.
Defined.

TODO: can this be derived from weqtotal2comm12 or similar?
Definition weqtotal2comm {A B : UU} {C : A B UU} :
  ( (a : A) (b : B), C a b) ( (b : B) (a : A), C a b).
Proof.
  use weq_iso.
  - exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
  - exact (λ pair, pr1 (pr2 pair),, pr1 pair,, pr2 (pr2 pair)).
  - reflexivity.
  - reflexivity.
Defined.

Direct products

A rewrite of pathsdirprod as an equivalence: Two pairs are equal if and only if both of their components are.
Definition pathsdirprodweq {X Y : UU} {x1 x2 : X} {y1 y2 : Y} :
  (make_dirprod x1 y1 = make_dirprod x2 y2) (x1 = x2) × (y1 = y2).
Proof.
  intermediate_weq (make_dirprod x1 y1 make_dirprod x2 y2).
  - apply total2_paths_equiv.
  - unfold PathPair; cbn.
    use weqfibtototal; intro p; cbn.
    apply transitive_paths_weq.
    apply (toforallpaths _ _ _ (transportf_const p Y) y1).
Defined.

Contractible types are neutral elements for ×, up to weak equivalence.
Lemma dirprod_with_contr_r : X Y : UU, iscontr X (Y Y × X).
Proof.
  intros X Y iscontrX.
  intermediate_weq (Y × unit); [apply weqtodirprodwithunit|].
  - apply weqdirprodf.
    × apply idweq.
    × apply invweq, weqcontrtounit; assumption.
Defined.

Lemma dirprod_with_contr_l : X Y : UU, iscontr X (Y X × Y).
Proof.
  intros X Y iscontrX.
  intermediate_weq (Y × X).
  - apply dirprod_with_contr_r; assumption.
  - apply weqdirprodcomm.
Defined.

Lemma total2_assoc_fun_left {A B : UU} (C : A B UU) (D : ( a : A, b : B, C a b) UU) :
 ( (x : a : A, b : B, C a b), D x)
  (x : _ : A, B),
    (y : a : A, C a (x a)),
     D (fun a : A ⇒ (x a,, y a)).
Proof.
 use weq_iso.
 - intros p.
    (fun a ⇒ (pr1 (pr1 p a))).
    (fun a ⇒ (pr2 (pr1 p a))).
   exact (pr2 p).
 - intros p.
   use tpair.
   + intros a.
     use tpair.
     × exact (pr1 p a).
     × exact (pr1 (pr2 p) a).
   + exact (pr2 (pr2 p)).
 - reflexivity.
 - reflexivity.
Defined.

Lemma sec_total2_distributivity {A : UU} {B : A UU} (C : a, B a UU) :
  ( a : A, b : B a, C a b)
     ( b : a : A, B a, a, C a (b a)).
Proof.
  use weq_iso.
  - intro f.
    use tpair.
    + exact (fun apr1 (f a)).
    + exact (fun apr2 (f a)).
  - intro f.
    intro a.
     ((pr1 f) a).
    apply (pr2 f).
  - apply idpath.
  - apply idpath.
Defined.