Library UniMath.MoreFoundations.QuotientSet
Require Import
UniMath.Foundations.Sets
UniMath.MoreFoundations.PartA.
Definition iscomprelfun2' {X Y Z} (RX:hrel X) (RY:hrel Y)
(f:X→Y→Z) : Type
:= (∏ x x', RX x x' → ∏ y, f x y = f x' y) ×
(∏ y y', RY y y' → ∏ x, f x y = f x y').
Definition iscomprelrelfun2' {X Y Z} (RX:hrel X) (RY:hrel Y) (RZ:eqrel Z)
(f:X→Y→Z) : Type
:= (∏ x x' y, RX x x' → RZ (f x y) (f x' y)) ×
(∏ x y y', RY y y' → RZ (f x y) (f x y')).
Lemma setquotuniv_equal { X : UU } ( R : hrel X ) ( Y : hSet )
( f f' : X → Y ) (p : f = f')
( is : iscomprelfun R f ) ( is' : iscomprelfun R f' )
: setquotuniv R Y f is = setquotuniv R Y f' is'.
Proof.
intros. destruct p. apply funextsec; intro c.
assert(ip : isaprop (iscomprelfun R f)).
{ apply impred; intro x; apply impred; intro x'.
apply impred; intro p. apply setproperty. }
assert( q : is = is' ).
{ apply ip. }
destruct q. reflexivity.
Qed.
Definition setquotuniv2' {X Y} (RX:hrel X) (RY:hrel Y)
{Z:hSet} (f:X→Y→Z) (is:iscomprelfun2' RX RY f) :
setquot RX → setquot RY → Z.
Proof.
intros x''.
simple refine (setquotuniv RX (funset (setquot RY) Z) _ _ _).
{ simpl. intro x. apply (setquotuniv RY Z (f x)).
intros y y' e. unfold iscomprelfun2 in is.
apply (pr2 is). assumption. }
{ intros x x' e.
assert( p : f x = f x' ).
{ apply funextsec; intro y. apply (pr1 is). assumption. }
apply setquotuniv_equal. assumption. } assumption.
Defined.
Definition setquotfun2' {X Y Z} {RX:hrel X} {RY:hrel Y} {RZ:eqrel Z}
(f:X→Y→Z) (is:iscomprelrelfun2' RX RY RZ f) :
setquot RX → setquot RY → setquot RZ.
Proof.
set (f' := λ x y, setquotpr RZ (f x y) : setquotinset RZ).
apply (setquotuniv2' RX RY f'). split.
{ intros ? ? p ?. apply iscompsetquotpr. exact (pr1 is x x' y p). }
{ intros ? ? p ?. apply iscompsetquotpr. exact (pr2 is x y y' p). }
Defined.
Lemma setquotfun2_equal {X Y Z} (RX:eqrel X) (RY:eqrel Y) (RZ:eqrel Z)
(f:X→Y→Z) (is:iscomprelrelfun2' RX RY RZ f)
(x:X) (y:Y) :
setquotfun2' f is (setquotpr RX x) (setquotpr RY y) =
setquotpr RZ (f x y).
Proof.
reflexivity. Defined.