Library UniMath.Combinatorics.ZFstructures
Require Export UniMath.Foundations.PartB.
Require Export UniMath.Foundations.Propositions.
Require Export UniMath.Foundations.Sets.
Require Export UniMath.Foundations.HLevels.
Require Export UniMath.Combinatorics.WellOrderedSets.
Require Export UniMath.Combinatorics.OrderedSets.
Require Export UniMath.MoreFoundations.DecidablePropositions.
Require Export UniMath.MoreFoundations.Propositions.
Local Open Scope logic.
Contents
- Some auxilliary lemmas which which are useful stated in this form for this file.
Lemma contr_to_pr1contr (X : UU) (P : X → hProp) (T : ∑ x, P x) (C : iscontr (T = T)) :
iscontr ((pr1 T) = (pr1 T)).
Proof.
exact (@isofhlevelweqf 0 (T = T) (pr1 T = pr1 T) (@total2_paths_hProp_equiv _ _ T T) C).
Qed.
Lemma pr1contr_to_contr (X : UU) (P : X → hProp) (T : ∑ x, P x) (C : iscontr (pr1 T = pr1 T)) :
iscontr (T = T).
Proof.
exact (@isofhlevelweqb 0 (T = T) (pr1 T = pr1 T) (@total2_paths_hProp_equiv _ _ T T) C).
Qed.
Lemma substructure_univalence (S : UU) (iso : S → S → UU) (u : ∏ (X Y : S), (X = Y) ≃ (iso X Y))
(Q : S → hProp) (A B : (∑ (X : S), Q X)) : (A = B) ≃ (iso (pr1 A) (pr1 B)).
Proof.
intermediate_weq (pr1 A = pr1 B).
apply (total2_paths_hProp_equiv Q A B).
apply (u (pr1 A) (pr1 B)).
Qed.
Contents
The definition of transitive reflexive rooted graphs TRRGraph
- Transitive reflexive rooted graph TRRGraph
- Tree Tree
- Up and Down Well-founded tree Tree_isWellFounded
- Rigid tree (no non-trivial automorphisms) isrigid
- ZF structures as rigid well-founded trees ZFStructures
- Proof that ZFStructures is an h-set isaset_ZFStruc
Definition PointedGraph := ∑ (V : hSet) (E : hrel V), V.
Definition isaroot {V : hSet} (E : hrel V) (r : V) : UU := (∏ w : V, E r w).
Lemma isaprop_isaroot {V : hSet} (E : hrel V) (r : V) : isaprop (isaroot E r).
Proof.
repeat (apply impred ; intros). apply propproperty.
Qed.
Definition isTRR (V : hSet) (E : hrel V) (r : V) : UU :=
isrefl E × istrans E × isaroot E r.
Lemma isaprop_isTRR (V : hSet) (E : hrel V) (r : V) : isaprop (isTRR V E r).
Proof.
apply isapropdirprod.
- apply (isaprop_isrefl E).
- apply isapropdirprod.
-- apply (isaprop_istrans E).
-- apply (isaprop_isaroot E r).
Qed.
Definition TRRGraphData (V : hSet) : UU := ∑ (E : hrel V) (r : V), isTRR V E r.
Lemma isaset_TRRGraphData (V : hSet) : isaset (TRRGraphData V).
Proof.
unfold TRRGraphData.
apply (isofhleveltotal2 2).
- apply isaset_hrel.
- intros x.
apply (isofhleveltotal2 2).
-- apply setproperty.
-- intros. apply hlevelntosn. apply isaprop_isTRR.
Qed.
Definition TRRGraph : UU := ∑ (V : hSet), TRRGraphData V.
Definition TRRG_edgerel (G : TRRGraph) : hrel (pr1 G) := pr12 G.
Local Notation "x ≤ y" := (TRRG_edgerel _ x y)(at level 70).
Definition TRRG_root (G : TRRGraph) : pr1 G := pr122 G.
Definition TRRG_transitivity (G : TRRGraph) : istrans (TRRG_edgerel G) := pr12 (pr222 G).
Definition selfedge (G : TRRGraph) (x : pr1 G) : pr1 (pr2 G) x x :=
(pr1 (pr2 (pr2 (pr2 G))) x).
Definition of TRRGraph homomorphisms isTRRGhomo, isomorphisms TRRGraphiso, and a proof
that isomorphisms are equivalent to identities TRRGraph_univalence
Definition isTRRGhomo {G H : TRRGraph} (f : pr1 G → pr1 H) : UU :=
(∏ (x y : pr1 G), (x ≤ y) ↔ (f x ≤ f y)) × (f (TRRG_root G) = TRRG_root H).
Lemma isaprop_isTRRGhomo {G H : TRRGraph} (f : pr1 G → pr1 H) : isaprop (isTRRGhomo f).
Proof.
apply isapropdirprod.
- repeat (apply impred ; intros). apply isapropdirprod.
-- repeat (apply impred; intros; apply propproperty).
-- repeat (apply impred; intros; apply propproperty).
- apply setproperty.
Qed.
Lemma TRRGhomo_frompath (X Y : hSet) (G : TRRGraphData X) (H : TRRGraphData Y) (p : X = Y) :
transportf (λ x : hSet, TRRGraphData x) p G = H →
@isTRRGhomo (X ,, G) (Y ,, H) (pr1weq (hSet_univalence _ _ p)).
Proof.
simpl.
induction p.
simpl.
unfold isTRRGhomo.
intros q.
split.
- intros x y.
rewrite → idpath_transportf in q.
split.
rewrite → q.
intros P ; apply P.
rewrite → q.
intros P ; apply P.
- rewrite → idpath_transportf in q.
induction q.
reflexivity.
Qed.
Local Lemma helper (X : hSet) (E E' : X → X → hProp) (r r' : X) (isE : isTRR X E r)
(isE' : isTRR X E' r') (q : E = E') (σ : r = r') :
transportf (λ x : X → X → hProp, ∑ r : X, isTRR X x r) q (r ,, isE) = (r' ,, isE').
Proof.
induction q.
rewrite idpath_transportf.
apply total2_paths_equiv.
∃ σ.
simpl.
apply (isaprop_isTRR X E r').
Qed.
Lemma TRRGhomo_topath (X Y : hSet) (G : TRRGraphData X) (H : TRRGraphData Y) (p : X = Y) :
@isTRRGhomo (X ,, G) (Y ,, H) (pr1weq (hSet_univalence _ _ p)) →
transportf (λ x : hSet, TRRGraphData x) p G = H.
Proof.
induction p.
rewrite → idpath_transportf.
intros P.
unfold isTRRGhomo in P.
simpl in P.
destruct P as [π σ].
assert (q : pr1 G = pr1 H).
{
use funextfun.
unfold homot.
intros x.
use funextfun.
unfold homot.
intros y.
apply (hPropUnivalence (pr1 G x y) (pr1 H x y) (pr1 (π x y)) (pr2 (π x y))).
}
apply total2_paths_equiv.
∃ q.
apply (helper X (pr1 G) (pr1 H) (pr12 G) (pr12 H) _ _ q σ).
Qed.
Definition TRRGraphiso (G H : TRRGraph) : UU := ∑ (f : pr1 G ≃ pr1 H), isTRRGhomo f.
Local Notation "G ≅ H" := (TRRGraphiso G H).
Definition id_TRRGraphiso (G : TRRGraph) : TRRGraphiso G G.
Proof.
∃ (idweq (pr1 G)).
split.
- intros. use isrefl_logeq.
- reflexivity.
Defined.
Definition TRRGraph_univalence_map (G H : TRRGraph) : (G = H) → (G ≅ H).
Proof.
intro p.
induction p.
exact (id_TRRGraphiso G).
Defined.
Definition TRRGraph_univalence_weq1 (G H : TRRGraph) : G = H ≃ G ╝ H :=
total2_paths_equiv _ G H.
Definition TRRGraph_univalence_weq2 (G H : TRRGraph) : G ╝ H ≃ G ≅ H.
Proof.
use weqbandf.
- exact (hSet_univalence (pr1 G) (pr1 H)).
- intro p. simpl. use weqimplimpl.
× intros q. exact (TRRGhomo_frompath (pr1 G) (pr1 H) (pr2 G) (pr2 H) p q).
× intros q. exact (TRRGhomo_topath (pr1 G) (pr1 H) (pr2 G) (pr2 H) p q).
× exact (isaset_TRRGraphData (pr1 H) ((p # pr2 G)%transport) (pr2 H)).
× exact (isaprop_isTRRGhomo (hSet_univalence_map (pr1 G) (pr1 H) p)).
Defined.
Lemma TRRGraph_univalence_weq2_idpath (G : TRRGraph) :
TRRGraph_univalence_weq2 G G (idpath (pr1 G) ,, idpath (((idpath (pr1 G)) # pr2 G)%transport)) =
id_TRRGraphiso G.
Proof.
apply total2_paths_equiv.
∃ (idpath (idweq (pr1 G))).
apply isaprop_isTRRGhomo.
Qed.
Lemma TRRGraph_univalence_weq1_idpath (G : TRRGraph) :
((TRRGraph_univalence_weq1 G G) (idpath G)) =
(idpath (pr1 G) ,, idpath (((idpath (pr1 G)) # pr2 G)%transport)).
Proof.
apply total2_paths_equiv.
∃ (idpath (idpath (pr1 G))).
reflexivity.
Qed.
Theorem isweq_TRRGraph_univalence_map (G H : TRRGraph) : isweq (TRRGraph_univalence_map G H).
Proof.
use isweqhomot.
- exact (weqcomp (TRRGraph_univalence_weq1 G H) (TRRGraph_univalence_weq2 G H)).
- intros e.
induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
rewrite TRRGraph_univalence_weq1_idpath.
rewrite TRRGraph_univalence_weq2_idpath.
reflexivity.
- use weqproperty.
Qed.
Definition TRRGraph_univalence (G H : TRRGraph) : (G = H) ≃ (G ≅ H).
Proof.
use make_weq.
- exact (TRRGraph_univalence_map G H).
- exact (isweq_TRRGraph_univalence_map G H).
Defined.
Lemma TRRGraph_univalence_compute (G H : TRRGraph) :
pr1 (TRRGraph_univalence G H) = TRRGraph_univalence_map G H.
Proof.
reflexivity.
Qed.
Definition DownwardClosure {G : TRRGraph} (x : pr1 G) : UU :=
∑ y : pr1 G, y ≤ x.
Definition antisymmetric {G :TRRGraph} (y z : pr1 G) : UU :=
(y ≤ z) × (z ≤ y) → (z = y).
Definition total {G : TRRGraph} (y z : pr1 G) : hProp :=
(y ≤ z) ∨ (z ≤ y).
Definition isatree (G : TRRGraph) : UU :=
∏ (x : pr1 G) (y z : DownwardClosure x), antisymmetric (pr1 y) (pr1 z) × total (pr1 y) (pr1 z).
Lemma isaprop_isatree (G : TRRGraph) : isaprop (isatree G).
Proof.
apply impred.
intros t ; apply impred.
intros x ; apply impred.
intros y ; apply isapropdirprod.
- apply impred.
intros P.
apply setproperty.
- apply propproperty.
Qed.
Definition Tree : UU := ∑ G : TRRGraph, isatree G.
Definition Tree_iso (T1 T2 : Tree) : UU := pr1 T1 ≅ pr1 T2.
Theorem Tree_univalence (T1 T2 : Tree) : (T1 = T2) ≃ (Tree_iso T1 T2).
Proof.
set (P := λ G, λ H, TRRGraph_univalence G H).
set (Q := λ G, (isatree G ,, isaprop_isatree G)).
apply (substructure_univalence _ _ P Q T1 T2).
Qed.
Definition Upw_underlying (T : Tree) (x : pr11 T) := ∑ (y : pr11 T), x ≤ y.
Lemma isaset_Upw_underlying (T : Tree) (x : pr11 T) : isaset (Upw_underlying T x).
Proof.
apply isaset_total2.
apply setproperty.
intros y.
apply hProp_to_hSet.
Qed.
Definition Upw (T : Tree) (x : pr11 T) : hSet :=
(∑ (y : pr11 T), pr121 T x y) ,, (isaset_Upw_underlying T x).
Definition Upw_E (T : Tree) (x : pr11 T) (y z : Upw T x) : hProp :=
pr121 T (pr1 y) (pr1 z).
Definition Upw_to_PointedGraph (T : Tree) (x : pr11 T) : PointedGraph :=
Upw T x ,, Upw_E T x ,, (x ,, selfedge (pr1 T) x).
Lemma Upw_reflexive (T : Tree) (x : pr11 T) :
∏ (y : pr1 (Upw_to_PointedGraph T x)), pr12 (Upw_to_PointedGraph T x) y y.
Proof.
intros y.
simpl.
unfold Upw_E.
exact (selfedge (pr1 T) (pr1 y)).
Qed.
Lemma Upw_transitive (T : Tree) (x : pr11 T) :
∏ y z w, (Upw_E T x) y z → (Upw_E T x) z w → (Upw_E T x) y w.
Proof.
intros y z w P Q.
unfold Upw_E in P. simpl in P.
exact (TRRG_transitivity (pr1 T) (pr1 y) (pr1 z) (pr1 w) P Q).
Qed.
Lemma Upw_rooted (T : Tree) (x : pr11 T) : ∏ y, (Upw_E T x) (x ,, selfedge (pr1 T) x) y.
Proof.
intros y.
exact (pr2 y).
Qed.
Definition Upw_to_TRRGraph (T : Tree) (x : pr11 T) : TRRGraph :=
pr1 (Upw_to_PointedGraph T x) ,, pr12 (Upw_to_PointedGraph T x) ,, pr22 (Upw_to_PointedGraph T x)
,, Upw_reflexive T x ,, Upw_transitive T x ,, Upw_rooted T x.
Lemma isatree_Upw (T : Tree) (x : pr11 T) : isatree (Upw_to_TRRGraph T x).
Proof.
unfold isatree. intros a. intros y z. simpl.
set (zzz := ((pr1 (pr1 z)))). set (zz := (pr1 z)).
set (yyy := ((pr1 (pr1 y)))). set (yy := (pr1 y)).
assert (Eya : pr121 T yyy (pr1 a)).
{
unfold DownwardClosure in y. destruct y as [y σ]. simpl. apply σ.
}
assert (Eza : pr121 T zzz (pr1 a)).
{
unfold DownwardClosure in z. destruct z as [z σ]. simpl. apply σ.
}
split.
- simpl.
unfold antisymmetric.
intros X.
destruct X as [yz zy].
assert (L1 : zzz = yyy).
{
simpl in a.
apply (pr1 (pr2 (T) (pr1 a) (yyy ,, Eya) (zzz ,, Eza)) (yz ,, zy)).
}
assert (p : pr1 zz = pr1 yy).
{
apply L1.
}
unfold Upw_to_TRRGraph in zz.
unfold Upw_to_TRRGraph in yy.
simpl in zz.
simpl in yy.
assert (q : pr2 zz = transportb (λ w, pr121 T x w) p (pr2 yy)).
{
apply proofirrelevance.
apply (pr2 (pr121 T x (pr1 zz))).
}
apply (total2_paths_b p q).
- assert (L : pr121 T yyy zzz ∨ pr121 T zzz yyy).
{
apply (pr2 ((pr2 (T)) (pr1 a) (yyy ,, Eya) (zzz ,, Eza))).
}
apply L.
Qed.
Definition Up {T : Tree} (x : pr11 T) : Tree := (Upw_to_TRRGraph T x ,, isatree_Upw T x).
Definition of rigid isrigid and superrigid issuperrigid trees
Definition isrigid (T : Tree) : UU
:= iscontr (T = T).
Lemma isaprop_isrigid (T : Tree) : isaprop (isrigid T).
Proof.
unfold isrigid.
apply isapropiscontr.
Qed.
Definition issuperrigid (T : Tree) : UU :=
isrigid T × (∏ (x : pr11 T), isrigid (Up x)).
Lemma isaprop_issuperrigid (T : Tree) : isaprop (issuperrigid T).
Proof.
unfold issuperrigid.
apply isapropdirprod.
apply isaprop_isrigid.
apply impred.
intros t.
apply isaprop_isrigid.
Qed.
Definition of bi-well-founded trees (well-founded both "up" and "down") Tree_isWellFounded
Definition isWellFoundedUp (T : Tree) : hProp :=
hasSmallest (pr121 T).
Definition hasLargest {X : UU} (R : hrel X) : hProp :=
∀ S : hsubtype X, (∃ x, S x) ⇒ ∃ x:X, S x ∧ ∀ y:X, S y ⇒ R y x.
Definition isWellFoundedDown (T : Tree) := hasLargest (pr121 T).
Definition Tree_isWellFounded (T : Tree) := (isWellFoundedUp T) × (isWellFoundedDown T).
Lemma isaprop_Tree_isWellFounded (T : Tree) : isaprop (Tree_isWellFounded T).
Proof.
apply isapropdirprod.
apply propproperty.
apply propproperty.
Qed.
The definition of pre-ZF structures preZFS.
preZFS is classically equivalent to the ZFS we define below but, as far as we can tell,
constructively inequivalent.
Definition ispreZFS (T : Tree) : UU := (Tree_isWellFounded T) × (issuperrigid T).
Lemma isaprop_ispreZFS (T : Tree) : isaprop (ispreZFS T).
Proof.
apply isapropdirprod.
apply (isaprop_Tree_isWellFounded T).
apply (isaprop_issuperrigid T).
Qed.
Definition preZFS : UU := ∑ (T : Tree), ispreZFS T.
Definition Ve (X : preZFS) : hSet := pr111 X.
Coercion Ve : preZFS >-> hSet.
Definition Ed (X : preZFS) : (Ve X) → (Ve X) → hProp := pr1 (pr2 (pr1 (pr1 X))).
Definition root (X : preZFS) : Ve X := pr1 (pr2 (pr2 (pr1 (pr1 X)))).
Lemma preZFS_isrigid (X : preZFS) : iscontr (X = X).
Proof.
apply (pr1contr_to_contr _ (λ x, (ispreZFS x ,, isaprop_ispreZFS x)) X).
exact (pr122 X).
Qed.
Theorem isaset_preZFS : isaset preZFS.
Proof.
simpl.
unfold isaset.
unfold isaprop.
simpl.
intros x y p.
induction p.
intros q.
apply (hlevelntosn 0 (x = x) (preZFS_isrigid x) (idpath x) q).
Qed.
Definition preZFS_iso (X Y : preZFS) : UU := Tree_iso (pr1 X) (pr1 Y).
Theorem preZFS_univalence (X Y : preZFS) : (X = Y) ≃ (preZFS_iso X Y).
Proof.
set (P := λ x, λ y, Tree_univalence x y).
set (Q := λ x, (ispreZFS x ,, isaprop_ispreZFS x)).
exact (substructure_univalence _ _ P Q X Y).
Qed.
Contents
- Upward Closure ("Branch") of a node x in a pre-ZF structure T
- Proof that it is a pre-ZF structure Branch
Definition preZFS_Branch (T : preZFS) (x : T) : Tree := Up x.
Definition preZFS_Branch_hsubtype_tohsubtype (T : preZFS) (x : T)
(S : hsubtype (pr11 (preZFS_Branch T x))) : hsubtype (pr111 T) :=
λ t, ∃ e, S (t ,, e).
REMARK : The definition preZFS_Branch_hsubtype_tohsubtype probably does not need to be
truncated. One can define it without truncation and prove the lemmas that it is a proposition.
Definition hsubtype_to_preZFS_Branch_hsubtype (T : preZFS) (x : T) (S : hsubtype (pr111 T)) :
hsubtype (pr11 (preZFS_Branch T x)) := λ z, S (pr1 z) ∧ Ed T x (pr1 z).
Lemma Branch_to_subtype (T : preZFS) (x : T) (S : hsubtype (pr11 (preZFS_Branch T x)))
: hsubtype_to_preZFS_Branch_hsubtype T x (preZFS_Branch_hsubtype_tohsubtype T x S) = S.
Proof.
set (H := (hsubtype_to_preZFS_Branch_hsubtype T x (preZFS_Branch_hsubtype_tohsubtype T x S))).
apply (funextfunPreliminaryUAH univalenceAxiom (pr11 (preZFS_Branch T x)) hProp H S).
unfold homot.
intros y.
unfold preZFS_Branch_hsubtype_tohsubtype.
unfold hsubtype_to_preZFS_Branch_hsubtype.
simpl.
assert (ES : ((∃ e : Ed T x (pr1 y), S (pr1 y,, e)) ∧ Ed T x (pr1 y)) → S y).
{
intros X.
destruct X as [ε e].
apply (ε (S y)).
intros X.
destruct y.
destruct X as [y z].
simpl in z.
simpl in y.
assert ( p : y = pr2 ).
apply propproperty.
rewrite <- p.
apply z.
}
assert (SE : ((∃ e : Ed T x (pr1 y), S (pr1 y,, e)) ∧ Ed T x (pr1 y)) <- S y).
{
intros X.
simpl.
unfold ishinh_UU.
split.
- intros P Q.
apply Q.
∃ (pr2 y).
apply X.
- apply (pr2 y).
}
apply (hPropUnivalence ((∃ e : Ed T x (pr1 y), S (pr1 y,, e)) ∧ Ed T x (pr1 y)) (S y) ES SE).
Qed.
Lemma fromBranch_hsubtype {T : preZFS} {x : T} {S : hsubtype (pr11 (preZFS_Branch T x))}
{t :pr11 (preZFS_Branch T x)} (s : S t) : preZFS_Branch_hsubtype_tohsubtype T x S (pr1 t).
Proof.
unfold preZFS_Branch_hsubtype_tohsubtype.
simpl.
unfold ishinh_UU.
intros P X.
apply X.
∃ (pr2 t).
apply s.
Qed.
Lemma toBranch_hsubtype {T : preZFS} {x : T} {S : hsubtype (pr111 T)} {t : pr111 T}
(e : Ed T x t) (s : S t) : hsubtype_to_preZFS_Branch_hsubtype T x S (t ,, e).
Proof.
unfold hsubtype_to_preZFS_Branch_hsubtype.
simpl.
split.
apply s.
apply e.
Qed.
Lemma preZFS_Branch_isWellFounded (T : preZFS) (x : T) : Tree_isWellFounded (preZFS_Branch T x).
Proof.
unfold Tree_isWellFounded.
split.
- unfold isWellFoundedUp.
intros S.
set (SS := preZFS_Branch_hsubtype_tohsubtype T x S).
intros X.
assert (wfunder : Tree_isWellFounded (pr1 T)).
{
apply (pr12 T).
}
unfold Tree_isWellFounded in wfunder.
unfold isWellFoundedUp in wfunder.
unfold hasSmallest in wfunder.
apply pr1 in wfunder.
simpl in wfunder.
set (L1 := wfunder SS).
assert (L2 : (∃ x : pr11 (preZFS_Branch T x), S x) → ishinh_UU (∑ y : pr111 T, SS y)).
{
intros P.
simpl in P.
apply (P (ishinh (∑ y : pr111 T, SS y))).
intros X1.
destruct X1 as [te s].
destruct te as [t e].
simpl.
unfold ishinh_UU.
intros Q X1.
apply X1.
∃ t.
apply (fromBranch_hsubtype s).
}
apply L2 in X.
apply L1 in X.
apply (X (∃ x0 : pr11 (preZFS_Branch T x), S x0 ∧ (∀ y : pr11 (preZFS_Branch T x),
S y ⇒ pr121 (preZFS_Branch T x) x0 y))).
intros Y.
destruct Y as [t [s π]].
assert (e : Ed T x t).
{
unfold SS in s.
unfold preZFS_Branch_hsubtype_tohsubtype in s.
apply (s (Ed T x t)).
intros Y.
destruct Y as [τ ξ].
apply τ.
}
assert (L4 : S (t ,, e)).
{
rewrite <- (Branch_to_subtype T x S).
apply (toBranch_hsubtype e s).
}
simpl.
unfold ishinh_UU.
intros P Y.
apply Y.
∃ (t ,, e).
split.
-- apply L4.
-- intros xx Q.
unfold Upw_E.
simpl.
apply π.
unfold SS.
simpl.
unfold ishinh_UU.
intros R Z.
apply Z.
∃ (pr2 xx).
apply Q.
- unfold isWellFoundedDown.
intros S.
set (SS := preZFS_Branch_hsubtype_tohsubtype T x S).
intros X.
set (wfunder := pr212 T).
unfold isWellFoundedDown in wfunder.
unfold hasLargest in wfunder.
simpl in wfunder.
set (L1 := wfunder SS).
assert (L2 : (∃ x : pr11 (preZFS_Branch T x), S x) → ishinh_UU (∑ y : pr111 T, SS y)).
{
intros Y.
simpl in Y.
apply (Y (ishinh (∑ y : pr111 T, SS y))).
intros Z.
destruct Z as [te s].
destruct te as [t e].
simpl.
unfold ishinh_UU.
intros P W.
apply W.
∃ t.
apply (fromBranch_hsubtype s).
}
apply L2 in X.
apply L1 in X.
apply (X (∃ xx : pr11 (preZFS_Branch T x), S xx ∧ (∀ y : pr11 (preZFS_Branch T x),
S y ⇒ pr121 (preZFS_Branch T x) y xx))).
intros Y.
destruct Y as [t [s π]].
assert (e : Ed T x t).
{
unfold SS in s.
unfold preZFS_Branch_hsubtype_tohsubtype in s.
apply (s (Ed T x t)).
intros Y.
destruct Y as [τ ξ].
apply τ.
}
assert (L4 : S (t ,, e)).
{
rewrite <- (Branch_to_subtype T x S).
apply (toBranch_hsubtype e s).
}
simpl.
unfold ishinh_UU.
intros P Y.
apply Y.
∃ (t ,, e).
split.
-- apply L4.
-- intros xx Q.
unfold Upw_E.
simpl.
apply π.
unfold SS.
simpl.
unfold ishinh_UU.
intros R Z.
apply Z.
∃ (pr2 xx).
apply Q.
Qed.
Lemma iscontrauto_Tree_TRRGraph (T : Tree) : isrigid T → iscontr ((pr1 T) = (pr1 T)).
Proof.
apply (@contr_to_pr1contr _ (λ x, (isatree x ,, isaprop_isatree x)) T).
Qed.
Definition Up_to_Up (T : Tree) (x : pr11 T) (y : pr11 (Up x)) :
pr1 (Upw_to_TRRGraph T (pr1 y)) → pr1 (Upw_to_TRRGraph (Up x) y).
Proof.
simpl.
intros X.
induction X as [t π].
induction y as [y σ].
exact ((t ,, ((pr122 (pr221 T)) x y t σ π)) ,, π).
Defined.
Definition Up_to_Up_inv (T : Tree) (x : pr11 T) (y : pr11 (Up x)) :
pr1 (Upw_to_TRRGraph (Up x) y) → pr1 (Upw_to_TRRGraph T (pr1 y)).
Proof.
simpl.
intros X.
induction X as [t π].
induction y as [y σ].
induction t as [tt θ].
simpl.
unfold Upw_E in π.
simpl in π.
exact (tt ,, π).
Defined.
Lemma isweq_Up_to_Up (T : Tree) (x : pr11 T) (y : pr11 (Up x)): isweq (Up_to_Up T x y).
Proof.
set (f := Up_to_Up T x y).
set (g := Up_to_Up_inv T x y).
assert (L : ∏ x, f (g x) = x).
{
intros z.
unfold g ; unfold Up_to_Up_inv.
unfold f ; unfold Up_to_Up.
destruct z as [z π].
apply total2_paths_equiv.
assert (H : (pr1 z,, pr122 (pr221 T) x (pr1 y) (pr1 z) (pr2 y) π) = z).
{
apply total2_paths_equiv.
∃ (idpath (pr1 z)).
apply propproperty.
}
∃ H.
apply propproperty.
}
assert (LL : ∏ x, g (f x) = x).
{
intros z.
unfold g ; unfold Up_to_Up_inv.
unfold f ; unfold Up_to_Up.
reflexivity.
}
apply (@weq_iso _ _ _ _ LL L).
Qed.
Lemma isTRRGhomo_Up_to_Up (T : Tree) (x : pr11 T) (y : pr11 (Up x)) : isTRRGhomo (Up_to_Up T x y).
Proof.
split.
- intros xx yy.
simpl.
split.
-- intros P ; apply P.
-- intros P ; apply P.
- simpl.
unfold Up_to_Up.
unfold selfedge.
simpl.
apply total2_paths_equiv.
destruct y as [y π].
simpl.
assert (q : pr122 (pr221 T) x y y π (selfedge (pr1 T) y) = π).
{
apply propproperty.
}
rewrite → q.
∃ (idpath (y ,, π)).
apply propproperty.
Qed.
Lemma UpUpid (T : Tree) (x : pr11 T) (y : pr11 (Up x)) :
pr1 (Up (pr1 y)) = Upw_to_TRRGraph (Up x) y.
Proof.
apply TRRGraph_univalence.
∃ (make_weq (Up_to_Up T x y) (isweq_Up_to_Up T x y)).
apply (isTRRGhomo_Up_to_Up T x y).
Qed.
Lemma preZFS_Branch_issuperrigid (T : preZFS) (x : T) : issuperrigid (preZFS_Branch T x).
Proof.
split.
- apply (pr1contr_to_contr _ (λ x, (isatree x ,, isaprop_isatree x)) (preZFS_Branch T x)).
apply (iscontrauto_Tree_TRRGraph (Up x) ((pr222 T) x)).
- intros y.
apply (pr1contr_to_contr _ (λ x, (isatree x ,, isaprop_isatree x)) (Up y)).
simpl.
unfold preZFS_Branch.
unfold preZFS_Branch in y.
rewrite <- UpUpid.
apply (iscontrauto_Tree_TRRGraph (Up (pr1 y)) ((pr222 T) (pr1 y))).
Qed.
Definition Branch (T : preZFS) (x : T) : preZFS :=
preZFS_Branch T x ,, preZFS_Branch_isWellFounded T x ,, preZFS_Branch_issuperrigid T x.
The definition of ZFS as a subtype of preZFS consisting of those pre-ZF structures each of
whose branches have uniqe representatives hasuniquerepbranch
Definition hasuniquerepbranch (T : preZFS) : UU :=
∏ (x y : T), (Branch T x) = (Branch T y) → x = y.
Lemma isaprop_hasuniquerepbranch (T : preZFS) : isaprop (hasuniquerepbranch T).
Proof.
repeat (apply impred ; intros).
apply setproperty.
Qed.
Definition ZFS : UU := ∑ (X : preZFS), hasuniquerepbranch X.
Definition pr1ZFS (X : ZFS) : preZFS := pr1 X.
Coercion pr1ZFS : ZFS >-> preZFS.
Definition ZFS_iso (x y : ZFS) := preZFS_iso x y.
Theorem ZFS_univalence (x y : ZFS) : (x = y) ≃ (ZFS_iso x y).
Proof.
set (P := λ x, λ y, preZFS_univalence x y).
set (Q := λ x, (hasuniquerepbranch x ,, isaprop_hasuniquerepbranch x)).
apply (substructure_univalence _ _ P Q x y).
Qed.
Theorem isaset_ZFS : isaset ZFS.
Proof.
apply (isofhleveltotal2 2).
- apply isaset_preZFS.
- intros x.
apply hlevelntosn.
apply isaprop_hasuniquerepbranch.
Qed.
Contents
Definition Branch_of_Branch_to_Branch {T : preZFS} (x : T) (y : Branch T x) :
pr1 (Upw_to_TRRGraph (preZFS_Branch T x) y) → pr1 (Upw_to_TRRGraph (pr1 T) (pr1 y)).
Proof.
simpl.
intros X.
induction X as [[e ε] π].
simpl in e.
simpl in π.
unfold Upw_E in π.
simpl in π.
exact (e ,, π).
Defined.
Definition Branch_of_Branch_to_Branch_inv {T : preZFS} (x : T) (y : Branch T x) :
pr1 (Upw_to_TRRGraph (pr1 T) (pr1 y)) → pr1 (Upw_to_TRRGraph (preZFS_Branch T x) y) :=
λ X, ((pr1 X ,, pr12 (pr222 (pr11 T)) x (pr1 y) (pr1 X) (pr2 y) (pr2 X)) ,, pr2 X).
Definition isweq_Branch_of_Branch_to_Branch {T : preZFS} (x : T) (y : Branch T x) :
isweq (Branch_of_Branch_to_Branch x y).
Proof.
set (f := Branch_of_Branch_to_Branch x y).
set (g := Branch_of_Branch_to_Branch_inv x y).
assert (L : ∏ x, f (g x) = x).
{
intros z.
unfold f ; unfold Branch_of_Branch_to_Branch.
unfold g ; unfold Branch_of_Branch_to_Branch_inv.
induction z as [z π].
simpl.
apply idpath.
}
assert (LL : ∏ x, g (f x) = x).
{
intros z.
unfold f ; unfold Branch_of_Branch_to_Branch.
unfold g ; unfold Branch_of_Branch_to_Branch_inv.
simpl.
induction z as [z π].
apply total2_paths_equiv.
assert (H : (pr1 z,, pr122 (pr221 (pr1 T)) x (pr1 y) (pr1 z) (pr2 y) π) = z).
{
apply total2_paths_equiv.
∃ (idpath (pr1 z)).
apply propproperty.
}
∃ H.
apply propproperty.
}
apply (@weq_iso _ _ _ _ LL L).
Defined.
Lemma isTRRGhomo_Branch_of_Branch_to_Branch {T : preZFS} (x : T) (y : Branch T x) :
isTRRGhomo (Branch_of_Branch_to_Branch x y).
Proof.
split.
- intros xx yy.
simpl.
split.
-- intros P ; apply P.
-- intros P ; apply P.
- simpl.
unfold Branch_of_Branch_to_Branch.
unfold selfedge.
simpl.
apply total2_paths_equiv.
destruct y as [y π].
simpl.
∃ (idpath y).
apply propproperty.
Qed.
Lemma Branch_of_Branch_eq_Branch {T : preZFS} (x : T) (y : Branch T x) :
Branch (Branch T x) y = Branch T (pr1 y).
Proof.
apply preZFS_univalence.
unfold preZFS_iso.
unfold Tree_iso.
simpl.
exact ((Branch_of_Branch_to_Branch x y ,, isweq_Branch_of_Branch_to_Branch x y)
,, isTRRGhomo_Branch_of_Branch_to_Branch x y).
Qed.
Theorem ZFS_Branch_is_ZFS (X : ZFS) (x : X) : hasuniquerepbranch (Branch X x).
Proof.
unfold hasuniquerepbranch.
intros y z.
rewrite → (Branch_of_Branch_eq_Branch x y).
rewrite → (Branch_of_Branch_eq_Branch x z).
intros p.
set (π := pr2 X).
simpl in π.
set (τ := π (pr1 y) (pr1 z) p).
apply total2_paths_equiv.
∃ τ.
apply propproperty.
Qed.
Definition ZFS_Branch (X : ZFS) (x : X) : ZFS := (Branch X x ,, ZFS_Branch_is_ZFS X x).
Local Notation "T ↑ x" := (ZFS_Branch T x)(at level 40).
Local Notation "x ⊏ y" := ((pr121 (pr111 _)) x y)(at level 50).
Definition Root (X : ZFS) := pr122 (pr111 X).
Definition isapoint {X : ZFS} (x : X) := ¬ (x = Root X).
Lemma isaprop_isapoint {X : ZFS} (x : X) : isaprop (isapoint x).
Proof.
apply impred.
intros.
apply isapropempty.
Qed.
Definition ZFS_elementof (X Y : ZFS) := ∑ (a : Y), (isapoint a) × (X = Y ↑ a).
Lemma isaprop_ZFS_elementof (X Y : ZFS) : isaprop (ZFS_elementof X Y).
Proof.
apply invproofirrelevance.
unfold isProofIrrelevant.
intros z w.
unfold ZFS_elementof in z.
unfold ZFS_elementof in w.
destruct z as [z [ ispp p]].
destruct w as [w [ ispq q]].
set (r := (! q) @ p).
apply total2_paths_equiv in r.
destruct r as [r ρ].
set (s := (pr2 Y w z r)).
simpl in ρ.
set (τ y := @isapropdirprod _ _ (isaprop_isapoint y) (isaset_ZFS X (Y ↑ y))).
set (P := λ y : Y, (isapoint y × X = Y ↑ y) ,, τ y).
apply (total2_paths_hProp_equiv P (z,, (ispp,, p)) (w,, (ispq,, q))).
simpl.
apply (! s).
Qed.
Local Notation "x ∈ y" := (ZFS_elementof x y)(at level 30).