Library UniMath.SyntheticHomotopyTheory.AffineLine
Local Unset Kernel Term Sharing.
Construction of affine lines
Preliminaries
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.NullHomotopies.
Require Import UniMath.MoreFoundations.Univalence.
Require Import UniMath.MoreFoundations.MoreEquivalences.
Require Import UniMath.MoreFoundations.Notations.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Nat.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Algebra.GroupAction
UniMath.NumberSystems.Integers.
Set Implicit Arguments.
Unset Strict Implicit.
Local Notation "g * x" := (ac_mult _ g x) : action_scope.
Local Open Scope hz_scope.
Local Open Scope transport.
Definition ℤRecursionData0 (P:ℤ→Type) (p0:P zero)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n))) := fun
f:∏ i, P i ⇒
(f zero = p0) ×
(∏ n, f( toℤ (S n)) = IH n (f ( toℤ n))) ×
(∏ n, f(- toℤ (S n)) = IH' n (f (- toℤ n))).
Definition ℤRecursionData (P:ℤ→Type)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n))) := fun
f:∏ i, P i ⇒
(∏ n, f( toℤ (S n)) = IH n (f ( toℤ n))) ×
(∏ n, f(- toℤ (S n)) = IH' n (f (- toℤ n))).
Lemma ℤRecursionUniq (P:ℤ→Type) (p0:P zero)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n))) :
iscontr (total2 (ℤRecursionData0 p0 IH IH')).
Proof.
intros.
unfold ℤRecursionData0.
apply (iscontrweqb (Y :=
∑ f:∏ w, P (negpos w),
(f (ii2 O) = p0) ×
(∏ n : nat, f (ii2 (S n)) = IH n (f (ii2 n))) ×
(f (ii1 O) = IH' O (f (ii2 O))) ×
(∏ n : nat, f (ii1 (S n)) = IH' (S n) (f (ii1 n))))).
{ apply (weqbandf (weqonsecbase _ negpos)). intro f.
simple refine (make_weq _ (isweq_iso _ _ _ _)).
{ intros [h0 [hp hn]]. simple refine (_,,_,,_,,_).
{ exact h0. } { exact hp. }
{ exact (hn O). } { intro n. exact (hn (S n)). } }
{ intros [h0 [hp [h1' hn]]]. simple refine (_,,_,,_).
{ exact h0. } { exact hp. }
{ intros [|n']. { exact h1'. } { exact (hn n'). } } }
{ intros [h0 [hp hn]]. simpl. apply paths3.
{ reflexivity. } { reflexivity. }
{ apply funextsec; intros [|n']; reflexivity; reflexivity. } }
{ intros [h0 [h1' [hp hn]]]. reflexivity. } }
intermediate_iscontr (
∑ f : (∏ n, P (negpos (ii1 n))) ×
(∏ n, P (negpos (ii2 n))),
(pr2 f O = p0) ×
(∏ n : nat, pr2 f (S n) = IH n (pr2 f n)) ×
(pr1 f O = IH' O (pr2 f O)) ×
(∏ n : nat, pr1 f (S n) = IH' (S n) (pr1 f n))).
{ apply (weqbandf (weqsecovercoprodtoprod (λ w, P (negpos w)))).
intro f. apply idweq. }
intermediate_iscontr (
∑ f : (∏ n, P (negpos (ii2 n))) ×
(∏ n, P (negpos (ii1 n))),
(pr1 f O = p0) ×
(∏ n : nat, pr1 f (S n) = IH n (pr1 f n)) ×
(pr2 f O = IH' O (pr1 f O)) ×
(∏ n : nat, pr2 f (S n) = IH' (S n) (pr2 f n))).
{ apply (weqbandf (weqdirprodcomm _ _)). intro f. apply idweq. }
intermediate_iscontr (
∑ (f2 : ∏ n : nat, P (negpos (ii2 n)))
(f1 : ∏ n : nat, P (negpos (ii1 n))),
(f2 O = p0) ×
(∏ n : nat, f2 (S n) = IH n (f2 n)) ×
(f1 O = IH' O (f2 O)) ×
(∏ n : nat, f1 (S n) = IH' (S n) (f1 n))).
{ apply weqtotal2asstor. }
intermediate_iscontr (
∑ f2 : ∏ n : nat, P (negpos (ii2 n)),
(f2 O = p0) ×
∑ f1 : ∏ n : nat, P (negpos (ii1 n)),
(∏ n : nat, f2 (S n) = IH n (f2 n)) ×
(f1 O = IH' O (f2 O)) ×
(∏ n : nat, f1 (S n) = IH' (S n) (f1 n))).
{ apply weqfibtototal; intro f2. apply weq_total2_prod. }
intermediate_iscontr (
∑ f2 : ∏ n : nat, P (negpos (ii2 n)),
(f2 O = p0) ×
(∏ n : nat, f2 (S n) = IH n (f2 n)) ×
∑ f1 : ∏ n : nat, P (negpos (ii1 n)),
(f1 O = IH' O (f2 O)) ×
(∏ n : nat, f1 (S n) = IH' (S n) (f1 n))).
{ apply weqfibtototal; intro f2. apply weqfibtototal; intro.
apply weq_total2_prod. }
intermediate_iscontr (
∑ f2 : ∏ n : nat, P (negpos (ii2 n)),
(f2 O = p0) ×
(∏ n : nat, f2 (S n) = IH n (f2 n))).
{ apply weqfibtototal; intro f2. apply weqfibtototal; intro h0.
apply weqpr1; intro ih2.
exact (Nat.Uniqueness.hNatRecursionUniq
(λ n, P (negpos (ii1 n)))
(IH' O (f2 O))
(λ n, IH' (S n))). }
apply Nat.Uniqueness.hNatRecursionUniq.
Defined.
Lemma A (P:ℤ→Type) (p0:P zero)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n))) :
weq (total2 (ℤRecursionData0 p0 IH IH'))
(@hfiber
(total2 (ℤRecursionData IH IH'))
(P zero)
(λ fh, pr1 fh zero)
p0).
Proof.
intros.
simple refine (make_weq _ (isweq_iso _ _ _ _)).
{ intros [f [h0 h]]. exact ((f,,h),,h0). }
{ intros [[f h] h0]. exact (f,,(h0,,h)). }
{ intros [f [h0 h]]. reflexivity. }
{ intros [[f h] h0]. reflexivity. }
Defined.
Lemma ℤRecursion_weq (P:ℤ→Type)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n))) :
weq (total2 (ℤRecursionData IH IH')) (P 0).
Proof.
intros. ∃ (λ f, pr1 f zero). intro p0.
apply (iscontrweqf (A _ _ _)). apply ℤRecursionUniq.
Defined.
Lemma ℤRecursion_weq_compute (P:ℤ→Type)
(IH :∏ n, P( toℤ n) → P( toℤ (S n)))
(IH':∏ n, P(- toℤ n) → P(- toℤ (S n)))
(fh : total2 (ℤRecursionData IH IH')) :
ℤRecursion_weq IH IH' fh = pr1 fh zero.
Proof.
reflexivity. Defined.
Definition ℤBiRecursionData (P:ℤ→Type) (IH :∏ i, P(i) → P(1+i)) :=
fun f:∏ i, P i ⇒ ∏ i, f(1+i)=IH i (f i).
Definition ℤBiRecursion_weq (P:ℤ→Type) (IH :∏ i, weq (P i) (P(1+i))) :
weq (total2 (ℤBiRecursionData IH)) (P 0).
Proof.
intros.
assert (k : ∏ n, one + toℤ n = toℤ (S n)).
{ intro. rewrite nattohzandS. reflexivity. }
set (l := λ n : nat, weq_transportf P (k n)).
assert (k' : ∏ n, - toℤ n = one + (- toℤ (S n))).
{ intros. unfold one, toℤ. rewrite nattohzand1.
rewrite nattohzandS. rewrite hzminusplus. rewrite <- (hzplusassoc one).
rewrite (hzpluscomm one). rewrite hzlminus. rewrite hzplusl0.
reflexivity. }
set (l' := λ n, weq_transportf P (k' n)).
set (ih := λ n, weqcomp (IH (toℤ n)) (l n)).
set (ih':= λ n, (weqcomp (l' n) (invweq (IH (- toℤ (S n)))))).
set (G := ℤRecursion_weq ih ih'). simple refine (weqcomp _ G).
apply weqfibtototal. intro f. unfold ℤRecursionData, ℤBiRecursionData.
simple refine (weqcomp (weqonsecbase _ negpos) _).
simple refine (weqcomp (weqsecovercoprodtoprod _) _).
simple refine (weqcomp (weqdirprodcomm _ _) _). apply weqdirprodf.
{ apply weqonsecfibers; intro n. simple refine (weqonpaths2 _ _ _).
{ change (negpos (ii2 n)) with (toℤ n). exact (l n). }
{ unfold l. apply weq_transportf_comp. }
{ reflexivity. } }
{ apply weqonsecfibers; intro n. simpl.
simple refine (weqcomp (make_weq _ (isweqpathsinv0 _ _)) _).
simple refine (weqonpaths2 _ _ _).
{ apply invweq. apply IH. }
{ simpl. rewrite homotinvweqweq. reflexivity. }
{ simpl. change (natnattohz 0 (S n)) with (- toℤ (S n)).
unfold l'. rewrite weq_transportf_comp.
reflexivity. } }
Defined.
Definition ℤBiRecursion_compute (P:ℤ→Type)
(IH :∏ i, weq (P i) (P(1+i)))
(fh : total2 (ℤBiRecursionData IH)) :
ℤBiRecursion_weq IH fh = pr1 fh 0.
Proof.
reflexivity. Defined.
Definition ℤBiRecursion_inv_compute (P : ℤ → Type) (f : ∏ z : ℤ, P z ≃ P (1 + z)) (p : P 0) :
pr1 (invmap (ℤBiRecursion_weq f) p) 0 = p
:=
! ℤBiRecursion_compute (invmap (ℤBiRecursion_weq f) p)
@
homotweqinvweq (ℤBiRecursion_weq f) p.
Definition ℤBiRecursion_transition_inv (P : ℤ → Type) (f : ∏ z : ℤ, P z ≃ P (1 + z)) (p : P 0) (z : ℤ) :
pr1 (invmap (ℤBiRecursion_weq f) p) (1 + z)
=
f z (pr1 (invmap (ℤBiRecursion_weq f) p) z)
:=
pr2 (invmap (ℤBiRecursion_weq f) p) z.
Definition ℤBiRecursion_transition_inv_reversed (P : ℤ → Type) (f : ∏ z : ℤ, P z ≃ P (1 + z)) (p : P 0) (z : ℤ) :
pr1 (invmap (ℤBiRecursion_weq f) p) z
=
invmap (f z) (pr1 (invmap (ℤBiRecursion_weq f) p) (1 + z))
:=
!homotinvweqweq _ _ @
maponpaths (invmap (f z)) (! ℤBiRecursion_transition_inv f p z).
Notation "n + x" := (ac_mult _ n x) : action_scope.
Notation "n - m" := (quotient _ n m) : action_scope.
Local Open Scope action_scope.
Definition GuidedSection {T:Torsor ℤ}
(P:T→Type) (IH:∏ t, weq (P t) (P (one + t))) := fun
f:∏ t, P t ⇒
∏ t, f (one + t) = IH t (f t).
Definition ℤTorsorRecursion_weq {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t))) (t0:T) :
weq (total2 (GuidedSection IH)) (P t0).
Proof.
intros. ∃ (λ fh, pr1 fh t0). intro q.
set (w := triviality_isomorphism T t0).
assert (k0 : ∏ i, one + w i = w (1+i)%hz).
{ intros. simpl. unfold right_mult, ac_mult. unfold act_mult. rewrite act_assoc.
reflexivity. }
set (l0 := (λ i, eqweqmap (maponpaths P (k0 i)))
: ∏ i, weq (P(one + w i)) (P(w(1+i)%hz))).
assert( e : right_mult t0 zero = t0 ). { apply act_unit. }
set (H := λ f, ∏ t : T, f (one + t) = (IH t) (f t)).
set ( IH' := (λ i, weqcomp (IH (w i)) (l0 i))
: ∏ i:ℤ, weq (P (w i)) (P (w(1+i)%hz))).
set (J := λ f, ∏ i : ℤ, f (1 + i)%hz = (IH' i) (f i)).
simple refine (iscontrweqb (@weq_over_sections ℤ T w 0 t0 e P q (e#'q) _ H J _) _).
{ apply transportfbinv. }
{ intro. apply invweq. unfold H,J,maponsec1. simple refine (weqonsec _ _ w _).
intro i. simple refine (weqonpaths2 _ _ _).
{ exact (invweq (l0 i)). }
{ unfold l0. rewrite (k0 i). reflexivity. }
{ unfold IH'. unfold weqcomp; simpl.
rewrite (homotinvweqweq (l0 i)). reflexivity. } }
exact (pr2 (ℤBiRecursion_weq IH') (e #' q)).
Defined.
Definition ℤTorsorRecursion_compute {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t))) t h :
ℤTorsorRecursion_weq IH t h = pr1 h t.
Proof.
reflexivity. Defined.
Definition ℤTorsorRecursion_inv_compute {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t)))
(t0:T) (h0:P t0) :
pr1 (invmap (ℤTorsorRecursion_weq IH t0) h0) t0 = h0.
Proof.
intros.
exact (! ℤTorsorRecursion_compute t0
(invmap (ℤTorsorRecursion_weq IH t0) h0)
@
homotweqinvweq (ℤTorsorRecursion_weq IH t0) h0).
Defined.
Definition ℤTorsorRecursion_transition {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t)))
(t:T)
(h:total2 (GuidedSection IH)) :
ℤTorsorRecursion_weq IH (one+t) h
=
IH t (ℤTorsorRecursion_weq IH t h).
Proof.
intros. rewrite 2!ℤTorsorRecursion_compute. exact (pr2 h t).
Defined.
Definition ℤTorsorRecursion_transition_inv {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t)))
(t:T) :
∏ h0,
invmap (ℤTorsorRecursion_weq IH t) h0
=
invmap (ℤTorsorRecursion_weq IH (one+t)) (IH t h0).
Proof.
intros.
assert (a := ℤTorsorRecursion_transition t (invmap (ℤTorsorRecursion_weq IH t) h0)).
rewrite homotweqinvweq in a. rewrite <- a.
rewrite homotinvweqweq. reflexivity.
Defined.
Definition ℤTorsorRecursion {T:Torsor ℤ} (P:T→Type)
(IH:∏ t, weq (P t) (P (one + t)))
(t t':T) :
(P t) ≃ (P t').
Proof.
intros.
exact (weqcomp (invweq (ℤTorsorRecursion_weq IH t))
(ℤTorsorRecursion_weq IH t')).
Defined.
Guided null-homotopies from ℤ-torsors
Definition target_paths {Y} {T:Torsor ℤ} (f:T→Y) := ∏ t, f t=f(one + t).
Definition GHomotopy {Y} {T:Torsor ℤ} (f:T→Y) (s:target_paths f) := fun
y:Y ⇒ ∑ h:nullHomotopyFrom f y, ∏ n, h(one + n) = h n @ s n.
Definition GuidedHomotopy {Y} {T:Torsor ℤ} (f:T→Y) (s:target_paths f) :=
total2 (GHomotopy s).
Definition GH_to_cone {Y} {T:Torsor ℤ}
{f:T→Y} {s:target_paths f} (t:T) :
GuidedHomotopy s → coconustot Y (f t).
Proof.
intros [y hp]. exact (y,,pr1 hp t).
Defined.
Definition GH_point {Y} {T:Torsor ℤ} {f:T→Y} {s:target_paths f}
(yhp : GuidedHomotopy s) := pr1 yhp : Y.
Definition GH_homotopy {Y} {T:Torsor ℤ} {f:T→Y} {s:target_paths f}
(yhp : GuidedHomotopy s)
:= pr1 (pr2 yhp)
: nullHomotopyFrom f (GH_point yhp).
Definition GH_equations {Y} {T:Torsor ℤ} (f:T→Y) (s:target_paths f)
(yhp : GuidedHomotopy s)
:= pr2 (pr2 yhp)
: let h := GH_homotopy yhp in
∏ n, h(one + n) = h n @ s n.
Theorem iscontrGuidedHomotopy {Y} (T:Torsor ℤ) (f:T→Y) (s:target_paths f) :
iscontr (GuidedHomotopy s).
Proof.
intros. apply (squash_to_prop (torsor_nonempty T)).
{ apply isapropiscontr. } intro t0.
apply ( iscontrweqb (Y := ∑ y:Y, y = f t0)).
{ apply weqfibtototal; intro y.
exact (ℤTorsorRecursion_weq (λ t, weq_pathscomp0r _ _) t0). }
apply iscontrcoconustot.
Defined.
Corollary proofirrGuidedHomotopy {Y} (T:Torsor ℤ) (f:T→Y) (s:target_paths f) :
∏ v w : GuidedHomotopy s, v=w.
Proof.
intros. apply proofirrelevancecontr. apply iscontrGuidedHomotopy.
Defined.
Definition iscontrGuidedHomotopy_comp_1 {Y} :
let T := trivialTorsor ℤ in
let t0 := 0 : T in
∏ (f:T→Y) (s:target_paths f),
GH_point (iscontrpr1 (iscontrGuidedHomotopy s)) = f t0.
Proof.
reflexivity. Defined.
Definition iscontrGuidedHomotopy_comp_2 {Y} :
let T := trivialTorsor ℤ in
let t0 := 0 : T in
∏ (f:T→Y) (s:target_paths f),
(GH_homotopy (iscontrpr1 (iscontrGuidedHomotopy s)) t0) =
(idpath (f t0)).
Proof.
intros.
assert (a2 := fiber_paths (iscontrweqb_compute
(weqfibtototal (GHomotopy s) (λ y : Y, y = f t0)
(λ y : Y,
ℤTorsorRecursion_weq
(λ t : T, weq_pathscomp0r y (s t)) t0))
(iscontrcoconustot Y (f t0)))
: @paths (GHomotopy s (f t0)) _ _).
assert (Q1 := eqtohomot (maponpaths pr1 ((idpath _ :
(pr2
(iscontrpr1
(iscontrweqb
(weqfibtototal (GHomotopy s) (λ y : Y, y = f t0)
(λ y : Y,
ℤTorsorRecursion_weq (λ t : T, weq_pathscomp0r y (s t)) t0))
(iscontrcoconustot Y (f t0)))))
=
(path_start a2)) @ a2)) t0).
assert (Q2 := eqtohomot
(maponpaths pr1
(compute_pr2_invmap_weqfibtototal
(λ y : Y,
ℤTorsorRecursion_weq
(λ t : T, weq_pathscomp0r y (s t)) t0)
(f t0,, idpath (f t0))))
t0).
assert (Q3 := ℤTorsorRecursion_inv_compute
(λ t : T,
weq_pathscomp0r
(pr1
(invmap
(weqfibtototal (λ y : Y, ∑ y0, GuidedSection (λ t1 : T, weq_pathscomp0r y (s t1)) y0)
(λ y : Y, (λ t1 : T, y = f t1) t0) (λ y : Y, ℤTorsorRecursion_weq (λ t1 : T, weq_pathscomp0r y (s t1)) t0))
(f t0,, idpath (f t0)))) (s t)) (pr2 (f t0,, idpath (f t0)))).
Abort.
Definition makeGuidedHomotopy {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0:y=f t0) :
GuidedHomotopy s.
Proof.
intros. exact (y ,, invweq (ℤTorsorRecursion_weq
(λ t, weq_pathscomp0r y (s t))
t0) h0).
Defined.
Definition makeGuidedHomotopy1 {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) (t0:T) : GuidedHomotopy s.
Proof.
intros. exact (makeGuidedHomotopy s (idpath (f t0))).
Defined.
Definition makeGuidedHomotopy_localPath {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0 h0':y=f t0) (q:h0=h0') :
makeGuidedHomotopy s h0 = makeGuidedHomotopy s h0'.
Proof.
intros. destruct q. reflexivity.
Defined.
Definition makeGuidedHomotopy_localPath_comp {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0 h0':y=f t0) (q:h0=h0') :
maponpaths pr1 (makeGuidedHomotopy_localPath s q) = idpath y.
Proof.
intros. destruct q. reflexivity.
Defined.
Definition makeGuidedHomotopy_verticalPath {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0:y=f t0)
{y':Y} (p:y' = y) :
makeGuidedHomotopy s (p@h0) = makeGuidedHomotopy s h0.
Proof.
intros. apply (two_arg_paths_f p). destruct p. reflexivity.
Defined.
Definition makeGuidedHomotopy_verticalPath_comp {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0:y=f t0)
{y':Y} (p:y' = y) :
maponpaths pr1 (makeGuidedHomotopy_verticalPath s h0 p) = p.
Proof.
intros. apply total2_paths2_comp1.
Defined.
Definition makeGuidedHomotopy_transPath {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0:y=f t0) :
makeGuidedHomotopy s h0 = makeGuidedHomotopy s (h0 @ s t0).
Proof.
intros. apply (maponpaths (tpair _ _)).
exact (ℤTorsorRecursion_transition_inv (λ t, weq_pathscomp0r y (s t)) _).
Defined.
Definition makeGuidedHomotopy_transPath_comp {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) {y:Y} t0 (h0:y=f t0) :
maponpaths pr1 (makeGuidedHomotopy_transPath s h0) = idpath y.
Proof.
intros.
unfold makeGuidedHomotopy_transPath.
exact (pair_path_in2_comp1
_ (ℤTorsorRecursion_transition_inv (λ t, weq_pathscomp0r y (s t)) _)).
Defined.
Definition makeGuidedHomotopy_diagonalPath {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) (t0:T) :
makeGuidedHomotopy1 s t0 = makeGuidedHomotopy1 s (one + t0).
Proof.
intros.
assert (b := makeGuidedHomotopy_transPath s (idpath(f t0))); simpl in b.
assert (c := makeGuidedHomotopy_localPath s (! pathscomp0rid (s t0))).
assert (a := makeGuidedHomotopy_verticalPath s (idpath(f(one + t0))) (s t0)) .
exact (b @ c @ a).
Defined.
Definition makeGuidedHomotopy_diagonalPath_comp {T:Torsor ℤ} {Y} (f:T→Y)
(s:target_paths f) (t0:T) :
maponpaths pr1 (makeGuidedHomotopy_diagonalPath s t0) = s t0.
Proof.
intros.
unfold makeGuidedHomotopy_diagonalPath.
simple refine (maponpaths_naturality (makeGuidedHomotopy_transPath_comp _ _) _).
simple refine (maponpaths_naturality (makeGuidedHomotopy_localPath_comp _ _) _).
exact (makeGuidedHomotopy_verticalPath_comp _ _ _).
Defined.
Definition map {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) :
∥ T ∥ → GuidedHomotopy s.
Proof.
intros t'.
apply (squash_to_prop t').
{ apply isapropifcontr. apply iscontrGuidedHomotopy. }
intro t; clear t'.
exact (makeGuidedHomotopy1 s t).
Defined.
Definition map_path {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) :
∏ t, map s (squash_element t) = map s (squash_element (one + t)).
Proof.
intros. exact (makeGuidedHomotopy_diagonalPath s t).
Defined.
Definition map_path_check {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) :
∏ t, ∏ p : map s (squash_element t) =
map s (squash_element (one + t)),
maponpaths pr1 p = s t.
Proof.
intros. set (q := map_path s t). assert (k : q=p).
{ apply (hlevelntosn 1). apply (hlevelntosn 0).
apply iscontrGuidedHomotopy. }
destruct k. exact (makeGuidedHomotopy_diagonalPath_comp s t).
Defined.
Definition makeGuidedHomotopy2 (T:Torsor ℤ) {Y} (f:T→Y) (s:target_paths f) :
GuidedHomotopy s.
Proof.
intros. exact (map s (torsor_nonempty T)).
Defined.
Definition affine_line (T:Torsor ℤ) := ∥ T ∥.
Definition affine_line_point (T:Torsor ℤ) : affine_line T.
Proof.
intros. exact (torsor_nonempty T).
Defined.
Lemma iscontr_affine_line (T:Torsor ℤ) : iscontr (affine_line T).
Proof.
intros. apply iscontraprop1.
{ apply propproperty. }
exact (torsor_nonempty T).
Defined.
Lemma affine_line_path {T:Torsor ℤ} (t u:affine_line T) : t = u.
Proof.
intros. apply proofirrelevancecontr, iscontr_affine_line.
Defined.
Definition affine_line_map {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) :
affine_line T → Y.
Proof.
intros t'. exact (pr1 (map s t')).
Defined.
Definition check_values {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) t :
affine_line_map s (squash_element t) = f t.
Proof.
reflexivity. Defined.
Definition check_paths {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) (t:T) :
maponpaths (affine_line_map s) (squash_path t (one + t)) = s t.
Proof.
intros.
refine (_ @ map_path_check (maponpaths (map s) (squash_path t (one + t)))).
apply pathsinv0. apply maponpathscomp.
Defined.
Definition check_paths_any {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) (t:T)
(p : squash_element t = squash_element (one + t)) :
maponpaths (affine_line_map s) p = s t.
Proof.
intros. set (p' := squash_path t (one + t)).
assert (e : p' = p). { apply (hlevelntosn 1). apply propproperty. }
destruct e. apply check_paths.
Defined.
Definition add_one {T:Torsor ℤ} : affine_line T → affine_line T.
Proof.
exact (squash_fun (λ t, one + t)).
Defined.
The image of the mere point in an affine line
Definition affine_line_value {T:Torsor ℤ} {Y} (f:T→Y) (s:target_paths f) : Y.
Proof.
exact (affine_line_map s (affine_line_point (T:=T))).
Defined.