Library UniMath.MoreFoundations.AxiomOfChoice
Require Export UniMath.MoreFoundations.DecidablePropositions.
Require Export UniMath.MoreFoundations.Sets.
Lemma pr1_issurjective {X : UU} {P : X → UU} :
(∏ x : X, ∥ P x ∥) → issurjective (pr1 : (∑ x, P x) → X).
Proof.
intros ne x. simple refine (hinhuniv _ (ne x)).
intros p. apply hinhpr.
exact ((x,,p),,idpath _).
Defined.
Characterize equivalence relations on bool
Definition eqrel_on_bool (P:hProp) : eqrel boolset.
Proof.
set (ifb := bool_rect (λ _:bool, hProp)).
∃ (λ x y, ifb (ifb htrue P y) (ifb P htrue y) x).
repeat split.
{ intros x y z a b.
induction x.
- induction z.
+ exact tt.
+ induction y.
× exact b.
× exact a.
- induction z.
+ induction y.
× exact a.
× exact b.
+ exact tt. }
{ intros x. induction x; exact tt. }
{ intros x y a. induction x; induction y; exact a. }
Defined.
Lemma eqrel_on_bool_iff (P:hProp) (E := eqrel_on_bool P) (f := setquotpr E) : f true = f false ↔ P.
Proof.
split.
{ intro q. change (E true false). apply (invmap (weqpathsinsetquot _ _ _)).
change (f true = f false). exact q. }
{ intro p. apply iscompsetquotpr. exact p. }
Defined.
Local Open Scope logic.
We write these axioms as types rather than as axioms, which would assert them to be true, to
force them to be mentioned as explicit hypotheses whenever they are used.
Definition AxiomOfChoice : hProp := ∀ (X:hSet), ischoicebase X.
Definition AxiomOfChoice_surj : hProp :=
∀ (X:hSet) (Y:UU) (f:Y→X), issurjective f ⇒ ∃ g, ∀ x, f (g x) = x.
Notice that the equation above is a proposition only because X is a set, which is not required
in the previous formulation. The notation for "=" currently in effect uses eqset instead of
paths.
Implications between forms of the Axiom of Choice
Lemma AC_impl2 : AxiomOfChoice ↔ AxiomOfChoice_surj.
Proof.
split.
- intros AC X Y f surj.
use (squash_to_prop (AC _ _ surj) (propproperty _)).
intro s.
use hinhpr.
use tpair.
+ exact (λ y, hfiberpr1 f y (s y)).
+ exact (λ y, hfiberpr2 f y (s y)).
- intros AC X P ne.
use (hinhuniv _ (AC X _ _ (pr1_issurjective ne))).
intros sec. use hinhpr. intros x.
induction (pr2 sec x). exact (pr2 (pr1 sec x)).
Defined.
We use the axiom of choice to find a splitting f of the projection map g from X
onto its set pi0 X of connected components. Since the image of f contains one
point in every component of X, f is surjective.
intros ac.
assert (ac' := pr1 AC_impl2 ac); clear ac; unfold AxiomOfChoice_surj in ac'.
set (S := pi0 X : hSet).
set (g := pi0pr X : X → S).
assert (f := ac' _ _ g (issurjsetquotpr _)); clear ac'.
apply (squash_to_prop f).
{ apply propproperty. }
clear f; intros [f eqn].
apply hinhpr.
∃ S.
∃ f.
intros x.
use (@squash_to_prop (f (g x) = x)%type).
{ apply (invmap (weqpathsinsetquot (pathseqrel X) _ _)).
change (g (f (g x)) = g x)%type.
exact (eqn (g x)). }
{ apply propproperty. }
intros e.
apply hinhpr.
∃ (g x).
exact e.
Defined.
assert (ac' := pr1 AC_impl2 ac); clear ac; unfold AxiomOfChoice_surj in ac'.
set (S := pi0 X : hSet).
set (g := pi0pr X : X → S).
assert (f := ac' _ _ g (issurjsetquotpr _)); clear ac'.
apply (squash_to_prop f).
{ apply propproperty. }
clear f; intros [f eqn].
apply hinhpr.
∃ S.
∃ f.
intros x.
use (@squash_to_prop (f (g x) = x)%type).
{ apply (invmap (weqpathsinsetquot (pathseqrel X) _ _)).
change (g (f (g x)) = g x)%type.
exact (eqn (g x)). }
{ apply propproperty. }
intros e.
apply hinhpr.
∃ (g x).
exact e.
Defined.
The Axiom of Choice implies the Law of the Excluded Middle
Theorem AC_to_LEM : AxiomOfChoice → LEM.
Proof.
intros AC P.
set (f := setquotpr _ : bool → setquotinset (eqrel_on_bool P)).
assert (q := pr1 AC_impl2 AC _ _ f (issurjsetquotpr _)).
apply (squash_to_prop q).
{ apply isapropdec, propproperty. }
intro sec. induction sec as [g h].
apply (logeq_dec (eqrel_on_bool_iff P)).
apply (retract_dec f g h isdeceqbool).
Defined.
A weaker Axiom of Choice
Having proved above that the Axiom of Choice implies the Law of the Excluded Middle, we would
like to formulate a weaker axiom of choice that would be usable in formalization, but without
implying the Law of the Excluded Middle, thus making it a more acceptable omniscience principle.
Our idea here is to add the hypothesis that the base set have decidable equality. Classically,
there is no difference between the two axioms. Recall from isasetifdeceq that a type with
decidable equality is a set, so we don't include being a set explicitly in the statement of the
axiom.
Definition AxiomOfDecidableChoice : hProp := ∀ (X:UU), isdeceq X ⇒ ischoicebase X.
Theorem AC_iff_ADC_and_LEM : AxiomOfChoice ⇔ AxiomOfDecidableChoice ∧ LEM.
Proof.
split.
- intros AC. split.
+ intros X i. exact (AC (make_hSet X (isasetifdeceq X i))).
+ exact (AC_to_LEM AC).
- intros [adc lem] X. refine (adc X _). intros x y. exact (lem (x = y)).
Defined.