Library UniMath.Folds.from_precats_to_folds_and_back
Univalent FOLDS
Benedikt Ahrens, following notes by Michael Shulman
Contents of this file:
- Map folds_precat_from_precat
- Map precat_from_folds_precat
- Identity folds_precat_from_precat_precat_from_folds_precat
- Identity precat_from_folds_precat_folds_precat_from_precat
- Lemmas to pass between the compositions via predicate comp and as function compose
- Lemmas to pass between the identities via predicate id and as a function identity
Require Import UniMath.Folds.UnicodeNotations.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Folds.aux_lemmas.
Require Import UniMath.Folds.folds_precat.
Local Open Scope cat.
Local Notation "a ⇒ b" := (precategory_morphisms a b).
Section from_precats_to_folds.
Section data.
Variable C : precategory_data.
Variable hsC : has_homsets C.
identity as a predicate
Definition id_pred {a : C} : a ⇒ a → hProp :=
λ f, make_hProp (f = identity _ ) (hsC a a _ _) .
Lemma id_pred_id (a : C) : id_pred (identity a).
Proof.
apply idpath.
Qed.
λ f, make_hProp (f = identity _ ) (hsC a a _ _) .
Lemma id_pred_id (a : C) : id_pred (identity a).
Proof.
apply idpath.
Qed.
composition as a predicate
Definition comp_pred {a b c : C} : a ⇒ b → b ⇒ c → a ⇒ c → hProp :=
λ f g fg, make_hProp (compose f g = fg) (hsC _ _ _ _ ).
Lemma comp_pred_comp (a b c : C) (f : a ⇒ b) (g : b ⇒ c) : comp_pred f g (compose f g).
Proof.
apply idpath.
Defined.
Definition folds_id_comp_from_precat_data : folds_id_T :=
tpair (λ C : folds_ob_mor, (∏ a : C, a ⇒ a → hProp)
× (∏ (a b c : C), (a ⇒ b) → (b ⇒ c) → (a ⇒ c) → hProp))
(pr1 C) (make_dirprod (@id_pred) (@comp_pred)).
End data.
Variable C : precategory.
Hypothesis hs: has_homsets C.
λ f g fg, make_hProp (compose f g = fg) (hsC _ _ _ _ ).
Lemma comp_pred_comp (a b c : C) (f : a ⇒ b) (g : b ⇒ c) : comp_pred f g (compose f g).
Proof.
apply idpath.
Defined.
Definition folds_id_comp_from_precat_data : folds_id_T :=
tpair (λ C : folds_ob_mor, (∏ a : C, a ⇒ a → hProp)
× (∏ (a b c : C), (a ⇒ b) → (b ⇒ c) → (a ⇒ c) → hProp))
(pr1 C) (make_dirprod (@id_pred) (@comp_pred)).
End data.
Variable C : precategory.
Hypothesis hs: has_homsets C.
FOLDS precategory from precategory
Definition folds_precat_from_precat : folds_precat.
Proof.
∃ (folds_id_comp_from_precat_data C hs).
repeat split.
- intro a.
apply hinhpr.
∃ (identity a).
apply idpath.
- intros; unfold T; simpl.
intermediate_path (compose f (identity _ )).
+ apply maponpaths; assumption.
+ apply id_right.
- intros; unfold T; simpl.
intermediate_path (compose (identity _ ) f).
+ rewrite X. apply idpath.
+ apply id_left.
- intros a b c f g.
apply hinhpr.
∃ (compose f g).
apply idpath.
- simpl.
intros a b c f g h k H1 H2.
intermediate_path (compose f g).
+ apply pathsinv0. apply H1.
+ apply H2.
- simpl. intros a b c d f g h fg gh fg_h f_gh H1 H2 H3 H4.
rewrite <- H4, <- H3, <- H2, <- H1.
apply assoc.
Defined.
End from_precats_to_folds.
precategory from FOLDS precategory
Definition precat_from_folds_data : precategory_data :=
tpair (λ C : precategory_ob_mor, precategory_id_comp C)
(pr1 (pr1 C)) (make_dirprod (I_func C)(@T_func C)).
Lemma is_precategory_precat_from_folds_data :
is_precategory precat_from_folds_data.
Proof.
apply is_precategory_one_assoc_to_two.
repeat split.
- apply T_I_r.
- apply T_I_l.
- apply T_assoc.
Qed.
Definition precat_from_folds_precat : precategory :=
tpair _ _ is_precategory_precat_from_folds_data.
End from_folds_to_precats.
Lemma folds_precat_from_precat_precat_from_folds_precat
(C : folds_precat)(hs:has_folds_homsets C):
folds_precat_from_precat (precat_from_folds_precat C) hs = C.
Proof.
apply subtypePath'.
2: { intro a; apply isapropdirprod.
+ apply isaprop_folds_ax_id.
+ apply isaprop_folds_ax_T. apply hs.
}
set (Hid := I_contr C).
set (Hcomp := T_contr C).
destruct C as [Cd CC]; simpl in ×.
destruct Cd as [Ca Cb]; simpl in ×.
unfold folds_id_comp_from_precat_data.
apply maponpaths.
destruct CC as [C1 C2]. simpl in ×.
destruct Cb as [Cid Ccomp]. simpl in ×.
apply pathsdirprod.
+ apply funextsec. intro a.
apply funextsec. intro f. unfold id_pred. simpl.
apply subtypePath.
{ intro. apply isapropisaprop. }
simpl.
apply weqtopaths.
apply weqimplimpl.
× intro H. rewrite H.
set (Hid' := pr1 (Hid a)).
apply (pr2 (Hid')).
× intro H. unfold precategory_morphisms in f.
set (H2 := pr2 (Hid a)). simpl in H2.
apply (path_to_ctr). assumption.
× apply hs. × apply (pr2 (Cid a f)).
+ apply funextsec; intro a.
apply funextsec; intro b.
apply funextsec; intro c.
apply funextsec; intro f.
apply funextsec; intro g.
apply funextsec; intro fg.
clear Hid.
apply subtypePath.
{ intro; apply isapropisaprop. }
apply weqtopaths. apply weqimplimpl.
× intro H. simpl in ×. rewrite <- H.
apply (pr2 (pr1 (Hcomp a b c f g))).
× simpl. intro H. apply pathsinv0. apply path_to_ctr.
assumption.
× simpl in ×. apply hs. × apply (pr2 (Ccomp _ _ _ _ _ _ )).
Qed.
Lemma precat_from_folds_precat_folds_precat_from_precat (C : precategory)(hs: has_homsets C) :
precat_from_folds_precat (folds_precat_from_precat C hs) = C.
Proof.
apply subtypePath'.
2: { intro; apply isaprop_is_precategory. assumption. }
destruct C as [Cdata Cax]; simpl in ×.
destruct Cdata as [Cobmor Cidcomp]; simpl in ×.
unfold precat_from_folds_data.
simpl.
apply maponpaths.
destruct Cidcomp as [Cid Ccomp]; simpl in ×.
apply pathsdirprod.
- apply funextsec; intro a.
apply pathsinv0.
apply path_to_ctr.
apply idpath.
- apply funextsec; intro a.
apply funextsec; intro b.
apply funextsec; intro c.
apply funextsec; intro f.
apply funextsec; intro g.
apply pathsinv0.
apply path_to_ctr.
apply idpath.
Qed.
Some lemmas to pass from comp to compose and back
Local Notation "C ^" := (folds_precat_from_precat C) (at level 3).
Local Notation "C ^^" := (precat_from_folds_precat C) (at level 3).
Lemma comp_compose {C : precategory} (hs: has_homsets C) {a b c : C} {f : a ⇒ b} {g : b ⇒ c} {h : a ⇒ c} :
f · g = h → T (C:=C^hs) f g h.
Proof.
apply (λ x, x).
Qed.
Lemma comp_compose' {C : precategory} (hs: has_homsets C){a b c : C} {f : a ⇒ b} {g : b ⇒ c} {h : a ⇒ c} :
T (C:=C^hs) f g h → f · g = h.
Proof.
apply (λ x, x).
Qed.
Lemma comp_compose2 {C : folds_precat} {a b c : C}
{f : folds_morphisms a b} {g : folds_morphisms b c} {h : folds_morphisms a c} :
compose (C:= C^^) f g = h → T f g h.
Proof.
intro H; rewrite <- H. apply T_func_T.
Qed.
Lemma comp_compose2' {C : folds_precat} {a b c : C}
{f : folds_morphisms a b} {g : folds_morphisms b c} {h : folds_morphisms a c} :
T f g h → compose (C:=C^^) f g = h.
Proof.
intro H. apply pathsinv0. apply path_to_ctr. assumption.
Qed.
Lemma id_identity {C : precategory} (hs: has_homsets C){a : C} {f : a ⇒ a} : f = identity _ → I (C:=C^hs) f.
Proof.
apply (λ x, x).
Qed.
Lemma id_identity' {C : precategory} (hs: has_homsets C){a : C} {f : a ⇒ a} : I (C:=C^hs) f → f = identity _ .
Proof.
apply (λ x, x).
Qed.
Lemma id_identity2 {C : folds_precat} {a : C} {f : a ⇒ a} : f = identity (C:=C^^) _ → I f.
Proof.
intro H; rewrite H.
apply I_func_I.
Qed.
Lemma id_identity2' {C : folds_precat} {a : C} {f : a ⇒ a} : I f → f = identity (C:=C^^) _ .
Proof.
intro H. apply path_to_ctr; assumption.
Qed.