Library UniMath.CategoryTheory.NNO

Definition natural number objects (NNO's)
This is related to the initial algebra definition in FunctorAlgebras.v
Written by: Anders Mörtberg, 2018
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.limits.terminal.

Local Open Scope cat.

Section nno.

Context {C : category} (TC : Terminal C).

Local Notation "1" := TC.

Definition isNNO (n : C) (z : C 1, n ) (s : C n, n ) : hProp.
Proof.
use tpair.
- exact ( (a : C) (q : C 1, a ) (f : C a, a ),
         ∃! u : C n, a , (z · u = q) × (s · u = u · f)).
- abstract (repeat (apply impred_isaprop; intros); apply isapropiscontr).
Defined.

Definition NNO : UU :=
   (n : C) (z : C 1, n ) (s : C n, n ), isNNO n z s.

Definition NNObject (n : NNO) : C := pr1 n.
Coercion NNObject : NNO >-> ob.

Definition zeroNNO (n : NNO) : C 1,n := pr1 (pr2 n).
Definition sucNNO (n : NNO) : C n,n := pr1 (pr2 (pr2 n)).

Lemma isNNO_NNO (n : NNO) : isNNO n (zeroNNO n) (sucNNO n).
Proof.
exact (pr2 (pr2 (pr2 n))).
Qed.

Definition make_NNO (n : C) (z : C 1, n ) (s : C n, n )
 (h : isNNO n z s) : NNO := (n,,z,,s,,h).

Definition hasNNO : hProp := NNO .

End nno.