Library UniMath.AlgebraicGeometry.Topology
Require Import UniMath.MoreFoundations.Subtypes.
Require Import UniMath.Topology.Topology.
Local Open Scope subtype.
Section top.
Definition TopologicalSpace : UU := ∑ X : hSet, isTopologicalSet X.
Definition mkTopologicalSpace (X : hSet) (O : (X → hProp) → hProp)
(is : isSetOfOpen_union O)
(is0 : isSetOfOpen_htrue O)
(is1 : isSetOfOpen_and O) : TopologicalSpace :=
(X,,O,,is,,(isSetOfOpen_finite_intersection_carac _ is0 is1)).
Definition topologicalSpaceSet (T : TopologicalSpace) : TopologicalSet :=
pr11 T ,, pr2 T.
Coercion topologicalSpaceSet : TopologicalSpace >-> TopologicalSet.
End top.
Section union.
Context {X : TopologicalSet}.
Definition union_open_hsubtype (A : hsubtype Open) : hsubtype X :=
union (λ U, ∃ H : isOpen U, A (U ,, H)).
Lemma is_open_union_open_hsubtype (A : hsubtype Open) : isOpen (union_open_hsubtype A).
Proof.
apply isOpen_union. intros U HU.
use (hinhuniv _ HU); intros H. exact (pr1 H).
Qed.
Definition union_open (A : hsubtype Open) : Open :=
union_open_hsubtype A ,, is_open_union_open_hsubtype A.
End union.
Declare Scope open_scope.
Delimit Scope open_scope with open.
Open Scope open.
Notation "⋃ S" := (union_open S) (at level 100, no associativity) : open_scope.
Section union_facts.
Context {X : TopologicalSet}
{A : hsubtype (@Open X)}.
Lemma contained_in_union_open (U : A) :
pr1 U ⊆ ⋃ A.
Proof.
intros x Hx. apply hinhpr. ∃ (pr1 U). use make_dirprod.
- apply hinhpr. ∃ (pr21 U). exact (pr2 U).
- exact Hx.
Qed.
Lemma hexists_open_neighborhood (p : carrier (⋃ A)):
∃ U : A, pr1 U (pr1 p).
Proof.
induction p as [p Hp]. simpl in Hp.
use (hinhuniv _ Hp); intro Hu.
induction Hu as [u Hu]. induction Hu as [Hu Hup].
use (hinhfun _ Hu); intro H.
induction H as [H HUu].
∃ (make_carrier _ _ HUu). exact Hup.
Qed.
End union_facts.
Definition binary_intersection_open {X : TopologicalSet} (u v : @Open X) : Open :=
(λ x : X, u x ∧ v x) ,, isOpen_and _ _ (pr2 u) (pr2 v).
Notation "u ∩ v" := (binary_intersection_open u v) (at level 40, left associativity) : open_scope.
Section intersection_facts.
Context {X : TopologicalSet} (u v : @Open X).
Definition intersection_contained1 : (u ∩ v) ⊆ u :=
λ _ Hx, pr1 Hx.
Definition intersection_contained2 : (u ∩ v) ⊆ v :=
λ _ Hx, pr2 Hx.
End intersection_facts.