Library UniMath.CategoryTheory.Core.Categories
Categories
Contents :
- precategories: homs are arbitrary types precategory
- categories: hom-types are sets category
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Notations.
Definition precategory_ob_mor : UU
:= ∑ ob : UU, ob → ob → UU.
Definition precategory_ob_mor_pair (ob : UU)(mor : ob → ob → UU) :
precategory_ob_mor := tpair _ ob mor.
Definition ob (C : precategory_ob_mor) : UU := @pr1 _ _ C.
Coercion ob : precategory_ob_mor >-> UU.
Definition precategory_morphisms { C : precategory_ob_mor } :
C → C → UU := pr2 C.
We introduce notation for morphisms in order for this notation not to pollute subsequent files,
we define this notation within the scope "cat"
Delimit Scope cat with cat. Delimit Scope cat with Cat. Delimit Scope cat_deprecated with cat_deprecated.
Local Open Scope cat.
Notation "a --> b" := (precategory_morphisms a b) : cat.
Notation "b <-- a" := (precategory_morphisms a b) (only parsing) : cat.
Notation "C ⟦ a , b ⟧" := (precategory_morphisms (C:=C) a b) : cat.
Definition precategory_id_comp (C : precategory_ob_mor) : UU
:=
(∏ c : C, c --> c)
×
(∏ a b c : C, a --> b → b --> c → a --> c).
Definition precategory_data : UU := ∑ X, precategory_id_comp X.
Definition precategory_data_pair (C : precategory_ob_mor)
(id : ∏ c : C, c --> c)
(comp: ∏ a b c : C, a --> b → b --> c → a --> c)
: precategory_data
:= tpair _ C (dirprodpair id comp).
Definition precategory_ob_mor_from_precategory_data (C : precategory_data) :
precategory_ob_mor := pr1 C.
Coercion precategory_ob_mor_from_precategory_data :
precategory_data >-> precategory_ob_mor.
Definition identity {C : precategory_data}
: ∏ c : C, c --> c
:= pr1 (pr2 C).
Local Notation "1" := (identity _) : cat.
Definition compose {C : precategory_data} { a b c : C }
: a --> b → b --> c → a --> c
:= pr2 (pr2 C) a b c.
Notation "f ;; g" := (compose f g) : cat_deprecated.
Notation "f · g" := (compose f g) : cat.
Notation "g ∘ f" := (compose f g) (only parsing) : cat.
Definition postcompose {C : precategory_data} {a b c : C} (g : b --> c) (f : a --> b)
: a --> c
:= compose f g.
Axioms of a precategory
- identity is left and right neutral for composition
- composition is associative
Definition is_precategory (C : precategory_data) : UU
:=
((∏ (a b : C) (f : a --> b), identity a · f = f)
×
(∏ (a b : C) (f : a --> b), f · identity b = f))
×
((∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
×
(∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))).
Definition is_precategory_one_assoc (C : precategory_data) : UU
:=
((∏ (a b : C) (f : a --> b), identity a · f = f)
×
(∏ (a b : C) (f : a --> b), f · identity b = f))
×
(∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h).
Definition is_precategory_one_assoc_to_two (C : precategory_data) :
is_precategory_one_assoc C → is_precategory C
:= λ i, (pr11 i,,pr21 i),,(pr2 i,,λ a b c d f g h, pathsinv0 (pr2 i a b c d f g h)).
Definition mk_is_precategory {C : precategory_data}
(H1 : ∏ (a b : C) (f : a --> b), identity a · f = f)
(H2 : ∏ (a b : C) (f : a --> b), f · identity b = f)
(H3 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
(H4 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))
: is_precategory C
:= (H1,,H2),,(H3,,H4).
Definition mk_is_precategory_one_assoc {C : precategory_data}
(H1 : ∏ (a b : C) (f : a --> b), identity a · f = f)
(H2 : ∏ (a b : C) (f : a --> b), f · identity b = f)
(H3 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
: is_precategory C
:= (H1,,H2),,(H3,,λ a b c d f g h, pathsinv0 (H3 a b c d f g h)).
Definition precategory := total2 is_precategory.
Definition mk_precategory (C : precategory_data) (H : is_precategory C)
: precategory
:= tpair _ C H.
Definition mk_precategory_one_assoc (C : precategory_data) (H : is_precategory_one_assoc C)
: precategory
:= tpair _ C (is_precategory_one_assoc_to_two C H).
Definition precategory_data_from_precategory (C : precategory) :
precategory_data := pr1 C.
Coercion precategory_data_from_precategory : precategory >-> precategory_data.
Definition has_homsets (C : precategory_ob_mor) : UU := ∏ a b : C, isaset (a --> b).
Lemma isaprop_has_homsets (C : precategory_ob_mor) : isaprop (has_homsets C).
Proof.
do 2 (apply impred; intro).
apply isapropisaset.
Qed.
Definition category := ∑ C:precategory, has_homsets C.
Definition category_pair C h : category := C,,h.
Definition category_to_precategory : category → precategory := pr1.
Coercion category_to_precategory : category >-> precategory.
Definition homset_property (C : category) : has_homsets C := pr2 C.
Definition precategory_pair (C:precategory_data) (i:is_precategory C)
: precategory := C,,i.
Definition makecategory
(obj : UU)
(mor : obj → obj → UU)
(homsets : ∏ a b, isaset (mor a b))
(identity : ∏ i, mor i i)
(compose : ∏ i j k (f:mor i j) (g:mor j k), mor i k)
(right : ∏ i j (f:mor i j), compose _ _ _ (identity i) f = f)
(left : ∏ i j (f:mor i j), compose _ _ _ f (identity j) = f)
(associativity : ∏ a b c d (f:mor a b) (g:mor b c) (h:mor c d),
compose _ _ _ f (compose _ _ _ g h) = compose _ _ _ (compose _ _ _ f g) h)
(associativity' : ∏ a b c d (f:mor a b) (g:mor b c) (h:mor c d),
compose _ _ _ (compose _ _ _ f g) h = compose _ _ _ f (compose _ _ _ g h))
: category
:= (precategory_pair
(precategory_data_pair
(precategory_ob_mor_pair
obj
(λ i j, mor i j))
identity compose)
((right,,left),,(associativity,,associativity'))),,homsets.
Lemma isaprop_is_precategory (C : precategory_data)(hs: has_homsets C)
: isaprop (is_precategory C).
Proof.
apply isofhleveltotal2.
{ apply isofhleveltotal2. { repeat (apply impred; intro). apply hs. }
intros _. repeat (apply impred; intro); apply hs. }
intros _. apply isofhleveltotal2.
{ repeat (apply impred; intro); apply hs. }
{ intros. repeat (apply impred; intro). apply hs. }
Qed.
Definition id_left (C : precategory) :
∏ (a b : C) (f : a --> b),
identity a · f = f := pr112 C.
Definition id_right (C : precategory) :
∏ (a b : C) (f : a --> b),
f · identity b = f := pr212 C.
Definition assoc (C : precategory) :
∏ (a b c d : C)
(f : a --> b) (g : b --> c) (h : c --> d),
f · (g · h) = (f · g) · h := pr122 C.
Definition assoc' (C : precategory) :
∏ (a b c d : C)
(f : a --> b) (g : b --> c) (h : c --> d),
(f · g) · h = f · (g · h) := pr222 C.
Arguments id_left [C a b] f.
Arguments id_right [C a b] f.
Arguments assoc [C a b c d] f g h.
Arguments assoc' [C a b c d] f g h.
Lemma assoc4 (C : precategory) (a b c d e : C) (f : a --> b) (g : b --> c)
(h : c --> d) (i : d --> e) :
((f · g) · h) · i = f · (g · h) · i.
Proof.
repeat rewrite assoc; apply idpath.
Qed.
Lemma remove_id_left (C : precategory) (a b : C) (f g : a --> b) (h : a --> a):
h = identity _ → f = g → h · f = g.
Proof.
intros H eq.
intermediate_path (identity _ · f).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_left.
+ apply eq.
Defined.
Lemma remove_id_right (C : precategory) (a b : C) (f g : a --> b) (h : b --> b):
h = identity _ → f = g → f · h = g.
Proof.
intros H eq.
intermediate_path (f · identity _).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_right.
+ apply eq.
Defined.
Lemma id_conjugation {A : precategory} {a b : A} (f : a --> b)
(g : b --> a) (x : b --> b)
: x = identity _ → f · g = identity _ → f · x · g = identity _ .
Proof.
intros H H'.
rewrite H. rewrite id_right. apply H'.
Qed.
Lemma cancel_postcomposition {C : precategory_data} {a b c: C}
(f f' : a --> b) (g : b --> c) : f = f' → f · g = f' · g.
Proof.
intro H.
induction H.
apply idpath.
Defined.
Lemma cancel_precomposition (C : precategory_data) (a b c: C)
(f f' : b --> c) (g : a --> b) : f = f' → g · f = g · f'.
Proof.
intro H.
induction H.
apply idpath.
Defined.
Any equality on objects a and b induces a morphism from a to b