Library UniMath.PAdics.z_mod_p
*Integers mod p
By Alvaro Pelayo, Vladimir Voevodsky and Michael A. Warren
December 2011
made compatible with the current UniMath library by Ralph Matthes in October 2017
Imports
Require Import UniMath.PAdics.lemmas.
Require Import UniMath.NumberSystems.Integers.
Require Import UniMath.Foundations.Preamble.
Unset Kernel Term Sharing.
for quicker proof-checking, approx. by factor 10
Local Open Scope hz_scope.
Definition hzdiv0 : hz → hz → hz → UU :=
fun n m k ⇒ n × k = m.
Definition hzdiv : hrel hz := fun n m ⇒ ∃ k : hz, hzdiv0 n m k.
Lemma hzdivisrefl : isrefl hzdiv.
Proof.
red.
intro.
unfold hzdiv.
apply total2tohexists.
split with 1.
apply hzmultr1.
Defined.
Lemma hzdivistrans : istrans hzdiv.
Proof.
intros a b c p q.
use (hinhuniv _ p).
intro k.
destruct k as [ k f ].
use (hinhuniv _ q).
intro l.
destruct l as [ l g ].
intros P s.
apply s.
unfold hzdiv0 in f, g.
split with ( k × l ).
red.
rewrite <- hzmultassoc.
rewrite f.
assumption.
Defined.
Lemma hzdivlinearcombleft ( a b c d : hz ) ( f : a = b + c )
( x : hzdiv d a ) ( y : hzdiv d b ) : hzdiv d c.
Proof.
intros P s.
use (hinhuniv _ x).
intro x'.
use (hinhuniv _ y).
intro y'.
apply s.
destruct x' as [ k g ].
destruct y' as [ l h ].
unfold hzdiv0 in ×.
split with ( k + - l ).
rewrite hzldistr.
rewrite g.
rewrite ( ringrmultminus hz ).
change ( ( a + ( - ( d × l ) ) )%hz = c ).
rewrite h.
apply ( hzplusrcan _ _ b ).
rewrite hzplusassoc.
rewrite hzlminus.
rewrite hzplusr0.
rewrite hzpluscomm.
assumption.
Defined.
Lemma hzdivlinearcombright ( a b c d : hz ) ( f : a = b + c )
( x: hzdiv d b ) ( y : hzdiv d c ) : hzdiv d a.
Proof.
intros P s.
use (hinhuniv _ x).
intro x'.
use (hinhuniv _ y).
intro y'.
apply s.
destruct x' as [ k g ].
destruct y' as [ l h ].
unfold hzdiv0 in ×.
split with ( k + l ).
rewrite hzldistr.
change ( (d × k + d × l)%hz = a ).
rewrite g, h, f.
apply idpath.
Defined.
Lemma divalgorithmnonneg ( n : nat ) ( m : nat ) ( p : hzlth 0 ( nattohz m ) ) :
∑ qr : hz × hz,
nattohz n = ( ( nattohz m ) × ( pr1 qr ) ) + ( pr2 qr ) ×
( hzleh 0 ( pr2 qr ) × hzlth ( pr2 qr ) ( nattohz m ) ).
Proof.
revert p.
induction n.
- intros.
split with ( dirprodpair 0 0 ).
split.
+ simpl.
rewrite ( ringrunax1 hz ).
rewrite ( ringmultx0 hz ).
rewrite nattohzand0.
change ( 0 = 0%hz ).
apply idpath.
+ split.
× apply isreflhzleh.
× assumption.
- intro p.
set ( q' := pr1 ( pr1 ( IHn p ) ) ).
set ( r' := pr2 ( pr1 ( IHn p ) ) ).
set ( f := pr1 ( pr2 ( IHn p ) ) ).
assert ( hzleh ( r' + 1 ) ( nattohz m ) ) as p'.
{ assert ( hzlth ( r' + 1 ) ( nattohz m + 1 ) ) as p''.
{ apply hzlthandplusr.
apply ( pr2 ( pr2 ( pr2 ( IHn p ) ) ) ).
}
apply hzlthsntoleh.
assumption.
}
set ( choice := hzlehchoice ( r' + 1 ) ( nattohz m ) p' ).
destruct choice as [ k | h ].
+ split with ( dirprodpair q' ( r' + 1 ) ).
split.
× rewrite (nattohzandS _ ).
rewrite hzpluscomm.
rewrite f.
change ( nattohz m × q' + r' + 1 = nattohz m × q' + ( r' + 1 ) ).
apply ringassoc1.
× split.
-- apply ( istranshzleh 0 r' ( r' + 1 ) ).
++ apply ( pr2 ( pr2 ( IHn p ) ) ).
++ apply hzlthtoleh.
apply hzlthnsn.
-- assumption.
+ split with ( dirprodpair ( q' + 1 ) 0 ).
split.
× rewrite ( nattohzandS _ ).
rewrite hzpluscomm.
rewrite f.
change ( nattohz m × q' + r' + 1 = nattohz m × ( q' + 1 ) + 0 ).
rewrite hzplusassoc.
rewrite h.
rewrite ( ringldistr _ q' _ ).
rewrite ringrunax2.
rewrite hzplusr0.
apply idpath.
× split.
-- apply isreflhzleh.
-- assumption.
Defined.
Local Lemma testlemma1 : hzneq 0 1.
Proof.
change 0 with ( nattohz 0%nat ).
rewrite <- nattohzand1.
apply nattohzandneq.
intro f.
apply ( isirreflnatlth 1 ).
assert ( natlth 0 1 ) as i by apply natlthnsn.
rewrite <- f in ×.
assumption.
Defined.
Local Lemma testlemma2 : hzneq 0 ( 1 + 1 ).
Proof.
change 0 with ( nattohz 0%nat ).
rewrite <- nattohzand1.
rewrite <- nattohzandplus.
apply nattohzandneq.
assert ( natneq ( 1 + 1 ) 0 ) as x.
{ apply ( natgthtoneq ( 1 + 1 ) 0 ).
simpl.
apply idpath. }
intro f.
apply pathsinv0 in f.
simpl in f.
assert (natneq ( 1 + 1 ) 2 ) as y.
{ rewrite f.
assumption. }
simpl in y.
assumption.
Defined.
Local Lemma testlemma21 : hzlth 0 ( nattohz 2 ).
Proof.
change 0 with ( nattohz 0%nat ).
apply nattohzandlth.
apply ( istransnatlth _ 1 ).
apply natlthnsn.
apply natlthnsn.
Defined.
Local Lemma testlemma3 : hzlth 0 ( nattohz 3 ).
Proof.
apply ( istranshzlth _ ( nattohz 2 ) ).
apply testlemma21.
change 0 with ( nattohz 0%nat ).
apply nattohzandlth.
apply natlthnsn.
Defined.
Lemma testlemma9 : hzlth 0 ( nattohz 9 ).
Proof.
apply ( istranshzlth _ ( nattohz 3 ) ).
- apply testlemma3.
- apply ( istranshzlth _ ( nattohz 6 ) ).
+ apply testlemma3.
+ apply testlemma3.
Defined.
Theorem divalgorithmexists ( n m : hz ) ( p : hzneq 0 m ) :
∑ qr : hz × hz,
n = m × ( pr1 qr ) + pr2 qr ×
( hzleh 0 ( pr2 qr ) ×
hzlth ( pr2 qr ) ( nattohz ( hzabsval m ) ) ).
Proof.
intros.
destruct ( hzlthorgeh n 0 ) as [ n_neg | n_nonneg ].
- destruct ( hzlthorgeh m 0 ) as [ m_neg | m_nonneg ].
+
set ( n' := hzabsval n ).
set ( m' := hzabsval m ).
assert ( nattohz m' = ( - m ) ) as f.
{ apply hzabsvallth0.
assumption. }
assert ( - - n = - ( nattohz n' ) ) as f0.
{ rewrite <- ( hzabsvallth0 n_neg ).
rewrite ( hzabsvallth0 n_neg ).
unfold n'.
rewrite ( hzabsvallth0 n_neg ).
apply idpath.
}
assert ( hzlth 0 ( nattohz m' ) ) as p'.
{ assert ( hzlth 0 ( - m ) ) as q.
{ apply hzlth0andminus.
assumption. }
rewrite f.
assumption.
}
set ( a := divalgorithmnonneg n' m' p' ).
set ( q := pr1 ( pr1 a ) ).
set ( r := pr2 ( pr1 a ) ).
set ( Q := q + 1 ).
set ( R := - m - r ).
destruct ( hzlehchoice 0 r ( pr1 ( pr2 ( pr2 a ) ) )) as [ less | equal ].
× split with ( dirprodpair Q R ).
split.
-- rewrite ( pathsinv0( ringminusminus hz n) ).
assert ( - nattohz n' = ( m × Q + R ) ) as f1.
{ unfold Q.
unfold R.
rewrite ( pr1 ( ( pr2 a ) ) ).
change ( pr1 ( pr1 a ) ) with q.
change ( pr2 ( pr1 a ) ) with r.
rewrite hzaddinvplus.
rewrite <- ( ringlmultminus hz ).
rewrite f.
rewrite ringminusminus.
rewrite ( ringldistr _ q _ _ ).
rewrite hzmultr1.
change ( ( m × q ) + - r = ( m × q + m ) + ( - m + - r ) ).
rewrite hzplusassoc.
rewrite <- ( hzplusassoc m _ _ ).
change ( m + - m ) with ( m - m ).
rewrite hzrminus.
rewrite hzplusl0.
apply idpath.
}
exact ( pathscomp0 f0 f1 ).
-- split.
++ unfold R.
assert ( hzlth r ( - m ) ) as u.
{ rewrite <- hzabsvalleh0.
apply ( pr2 ( pr2 ( pr2 ( a ) ) ) ).
apply hzlthtoleh.
assumption.
}
rewrite <- ( hzlminus m ).
change ( pr2 ( dirprodpair Q ( - m - r ) ) ) with ( - m - r ).
apply hzlehandplusl.
apply hzlthtoleh.
rewrite <- ( ringminusminus hz m ).
apply hzlthminusswap.
assumption.
++ unfold R.
unfold m'.
rewrite hzabsvalleh0.
** change ( hzlth ( - m + - r ) ( - m ) ).
assert ( hzlth ( - m - r ) ( - m + 0 ) ) as u.
{ apply hzlthandplusl.
apply hzgth0andminus.
exact less.
}
assert ( - m + 0 = ( - m ) ) as f' by apply hzplusr0.
exact ( transportf ( fun x ⇒
hzlth ( - m + - r ) x ) f' u ).
** apply hzlthtoleh.
assumption.
× split with (dirprodpair q 0 ).
split.
-- rewrite <- ( ringminusminus hz n ).
assert ( - nattohz n' = m × q + 0 ) as f1.
{ rewrite ( pr1 ( pr2 a ) ).
change ( pr1 (pr1 a ) ) with q.
change ( pr2 ( pr1 a ) ) with r.
rewrite hzplusr0.
rewrite ( pathsinv0 equal ).
rewrite hzplusr0.
assert ( - ( nattohz m' × q ) = - ( nattohz m' ) × q ) as f2.
{ apply pathsinv0.
apply ringlmultminus. }
rewrite f2.
unfold m'.
rewrite hzabsvalleh0.
++ apply ( maponpaths ( fun x ⇒ x × q ) ).
apply ringminusminus.
++ apply hzlthtoleh.
assumption.
}
exact ( pathscomp0 f0 f1 ).
-- split.
++ change ( pr2 ( dirprodpair q 0 ) ) with 0.
apply isreflhzleh.
++ rewrite equal.
change ( pr2 ( dirprodpair q r ) ) with r.
apply ( pr2 ( pr2 ( pr2 a ) ) ).
+ destruct ( hzgehchoice m 0 m_nonneg ) as [ h | k ].
×
assert ( hzlth 0 ( nattohz ( hzabsval m ) ) ) as p'.
{ rewrite hzabsvalgth0.
-- apply h.
-- assumption. }
set ( a := divalgorithmnonneg ( hzabsval n ) ( hzabsval m ) p' ).
set ( q' := pr1 ( pr1 a ) ).
set ( r' := pr2 ( pr1 a ) ).
assert ( n = - - n ) as f0.
{ apply pathsinv0.
apply ringminusminus. }
assert ( - - n = - ( nattohz ( hzabsval n ) ) ) as f1.
{ apply pathsinv0.
apply maponpaths.
apply hzabsvalleh0.
apply hzlthtoleh.
assumption.
}
destruct ( hzlehchoice 0 r' ( pr1 ( pr2 ( pr2 a ) ) ) ) as [ less | equal ].
-- split with (dirprodpair ( - q' - 1 ) ( m - r' ) ).
split.
++ change ( pr1 ( dirprodpair ( - q' - 1 ) ( m - r' ) ) ) with ( - q' - 1 ).
change ( pr2 ( dirprodpair ( - q' - 1 ) ( m - r' ) ) ) with ( m - r' ).
change ( - q' - 1 ) with ( - q' + ( - 1%hz ) ).
rewrite hzldistr.
assert ( - nattohz ( hzabsval n ) =
( m × ( - q' ) + m × ( - 1%hz ) ) + ( m - r' ) ) as f2.
{ rewrite ( pr1 ( pr2 a ) ).
change ( pr1 ( pr1 a ) ) with q'.
change ( pr2 ( pr1 a ) ) with r'.
rewrite hzabsvalgth0.
** rewrite hzaddinvplus.
rewrite ( ringrmultminus hz ).
rewrite ( hzplusassoc _ ( m × ( - 1%hz ) ) ).
apply ( maponpaths ( fun x ⇒ - ( m × q' ) + x ) ).
assert ( - m + ( m - r' ) = m × ( - 1%hz ) + ( m - r' ) ) as f3.
{ apply ( maponpaths ( fun x ⇒ x + ( m - r' ) ) ).
apply pathsinv0.
assert ( m × ( - 1%hz ) = - ( m × 1%hz ) ) as f30
by apply ringrmultminus.
assert ( - ( m × 1 ) = - m ) as f31.
{ rewrite hzmultr1.
apply idpath. }
rewrite f30.
assumption.
}
assert ( - r' = - m + ( m - r' ) ) as f4.
{ change ( - r' = -m + ( m + - r' ) ).
rewrite <- hzplusassoc.
rewrite hzlminus, hzplusl0.
apply idpath.
}
rewrite f4.
assumption.
** assumption.
}
rewrite f0, f1.
assumption.
++ split.
** change ( pr2 ( dirprodpair ( - q' - 1 ) ( m - r' ) ) ) with ( m - r' ).
apply hzlthtoleh.
rewrite <- ( hzrminus r' ).
apply hzlthandplusr.
rewrite <- ( hzabsvalgeh0 m_nonneg ).
apply ( pr2 ( pr2 a ) ).
** rewrite ( hzabsvalgeh0 m_nonneg ).
assert ( hzlth ( m - r' ) ( m + 0 ) ) as u.
{ apply hzlthandplusl.
apply hzgth0andminus.
apply less.
}
rewrite hzplusr0 in u.
assumption.
-- split with ( dirprodpair ( - q' ) 0 ).
split.
++ change ( pr1 ( dirprodpair ( - q' ) 0 ) ) with ( - q' ).
change ( pr2 ( dirprodpair ( - q' ) 0 ) ) with 0.
assert ( - nattohz ( hzabsval n ) = m × - q' + 0 ) as f2.
{ rewrite hzplusr0.
rewrite ( pr1 ( pr2 a ) ).
change ( pr1 ( pr1 a ) ) with q'.
change ( pr2 ( pr1 a ) ) with r'.
rewrite <- equal.
rewrite hzplusr0.
rewrite hzabsvalgeh0.
apply pathsinv0.
apply ringrmultminus.
assumption.
}
rewrite f0, f1.
assumption.
++ split.
** apply isreflhzleh.
** rewrite equal.
apply ( pr2 ( pr2 ( pr2 a ) ) ).
× apply fromempty.
rewrite k in p.
simpl in p.
apply p.
apply idpath.
- set ( choice2 := hzlthorgeh m 0 ).
destruct choice2 as [ m_neg | m_nonneg ].
+
assert ( hzlth 0 ( nattohz ( hzabsval m ) ) ) as p'.
{ rewrite hzabsvallth0.
× rewrite <- ( ringminusminus hz m ) in m_neg.
set ( d:= hzlth0andminus m_neg ).
rewrite ringminusminus in d.
apply d.
× assumption.
}
set ( a := divalgorithmnonneg ( hzabsval n ) ( hzabsval m ) p' ).
set ( q' := pr1 ( pr1 a ) ).
set ( r' := pr2 ( pr1 a ) ).
split with ( dirprodpair ( - q' ) r' ).
split.
× rewrite <- hzabsvalgeh0.
-- rewrite ( pr1 ( pr2 a ) ).
change ( pr1 ( pr1 a ) ) with q'.
change ( pr2 ( pr1 a ) ) with r'.
change ( pr1 ( dirprodpair ( - q' ) r' ) ) with ( - q' ).
change ( pr2 ( dirprodpair ( - q' ) r' ) ) with r'.
rewrite hzabsvalleh0.
++ apply ( maponpaths ( fun x ⇒ x + r' ) ).
assert ( - m × q' = - ( m × q' ) ) as f0
by apply ringlmultminus.
assert ( - ( m × q' ) = m × ( - q' ) ) as f1.
{ apply pathsinv0.
apply ringrmultminus. }
exact ( pathscomp0 f0 f1 ).
++ apply hzlthtoleh.
assumption.
-- assumption.
× split.
-- apply (pr1 ( pr2 ( pr2 a ) ) ).
-- apply ( pr2 ( pr2 ( pr2 a ) ) ).
+
assert ( hzlth 0 ( nattohz ( hzabsval m ) ) ) as p'.
{ rewrite hzabsvalgeh0.
× destruct ( hzneqchoice 0 m ) as [ l | r ].
-- apply p.
-- apply fromempty.
apply ( isirreflhzgth 0 ).
apply ( hzgthgehtrans 0 m 0 ); assumption.
-- assumption.
× assumption.
}
set ( a := divalgorithmnonneg ( hzabsval n ) ( hzabsval m ) p' ).
set ( q' := pr1 ( pr1 a ) ).
set ( r' := pr2 ( pr1 a ) ).
split with ( dirprodpair q' r' ).
split.
-- rewrite <- hzabsvalgeh0.
++ rewrite ( pr1 ( pr2 a ) ).
change ( pr1 ( pr1 a ) ) with q'.
change ( pr2 ( pr1 a ) ) with r'.
change ( pr1 ( dirprodpair q' r' ) ) with q'.
change ( pr2 ( dirprodpair q' r' ) ) with r'.
rewrite hzabsvalgeh0.
** apply idpath.
** assumption.
++ assumption.
-- split.
++ apply ( pr1 ( pr2 ( pr2 a ) ) ).
++ apply ( pr2 ( pr2 ( pr2 a ) ) ).
Defined.
Lemma hzdivhzabsval ( a b : hz ) ( p : hzdiv a b ) :
natleh ( hzabsval a ) ( hzabsval b ) ∨ hzabsval b = 0%nat.
Proof.
intros P q.
apply ( p P ).
intro t.
destruct t as [ k f ].
unfold hzdiv0 in f.
apply q.
apply natdivleh with ( hzabsval k ).
rewrite hzabsvalandmult.
rewrite f.
apply idpath.
Defined.
Lemma divalgorithm ( n m : hz ) ( p : hzneq 0 m ) :
iscontr ( ∑ qr : hz × hz,
n = ( m × ( pr1 qr ) ) + ( pr2 qr ) ×
( hzleh 0 ( pr2 qr ) ×
hzlth ( pr2 qr ) ( nattohz ( hzabsval m ) ) ) ).
Proof.
intros.
split with ( divalgorithmexists n m p ).
intro t.
destruct t as [ qr' t' ].
destruct qr' as [ q' r' ].
simpl in t'.
destruct t' as [ f' p2p2t ].
destruct p2p2t as [ p1p2p2t p2p2p2t ].
destruct divalgorithmexists as [ qr v ].
destruct qr as [ q r ].
destruct v as [ f p2p2dae ].
destruct p2p2dae as [ p1p2p2dae p2p2p2dae ].
simpl in f.
simpl in p1p2p2dae.
simpl in p2p2p2dae.
assert ( r' = r ) as h.
{
assert ( m × ( q - q' ) = ( r' - r ) ) as h0.
{ change ( q - q' ) with ( q + - q' ).
rewrite hzldistr.
rewrite <- ( hzplusr0 ( r' - r ) ).
rewrite <- ( hzrminus ( m × q' ) ).
change ( r' - r ) with ( r' + ( - r ) ).
rewrite ( hzplusassoc r' ).
change ( ( m × q' ) - ( m × q' ) ) with ( ( m × q' ) + ( - ( m × q' ) ) ).
rewrite <- ( hzplusassoc ( - r ) ).
rewrite ( hzpluscomm ( -r ) ).
rewrite <- ( hzplusassoc r' ).
rewrite <- ( hzplusassoc r' ).
rewrite ( hzpluscomm r' ).
rewrite <- f'.
rewrite f.
rewrite ( hzplusassoc ( m × q ) ).
change ( r + - r ) with ( r - r ).
rewrite hzrminus.
rewrite hzplusr0.
rewrite ( ringrmultminus hz ).
change ( m × q + - ( m × q' ) ) with ( ( m × q + - ( m × q' ) )%ring ).
apply idpath.
}
assert ( natleh ( hzabsval m ) ( hzabsval ( r' - r ) ) ∨
hzabsval ( r' - r ) = 0%nat ) as v.
{ apply hzdivhzabsval.
intro P.
intro s.
apply s.
split with ( q - q' ).
unfold hzdiv0.
assumption.
}
assert ( isaprop ( r' = r ) ) as P by apply isasethz.
apply ( v ( hProppair ( r' = r ) P ) ).
intro s.
destruct s as [ left | right ].
- assert ( hzlth ( nattohz ( hzabsval ( r' - r ) ) ) ( nattohz ( hzabsval m ) ) ) as u.
{ destruct ( hzgthorleh r' r ) as [ greater | lesseq ].
+ assert ( hzlth 0 ( r' - r ) ) as e.
{ rewrite <- ( hzrminus r ).
apply hzlthandplusr.
assumption.
}
rewrite hzabsvalgth0.
× apply hzlthminus.
-- exact p2p2p2t.
-- exact p2p2p2dae.
-- exact p1p2p2dae.
× apply e.
+ destruct ( hzlehchoice r' r lesseq ) as [ less | equal ].
× rewrite hzabsvalandminuspos.
-- rewrite hzabsvalgth0.
++ apply hzlthminus.
** exact p2p2p2dae.
** exact p2p2p2t.
** exact p1p2p2t.
++ apply hzlthminusequiv.
assumption.
-- exact p1p2p2t.
-- exact p1p2p2dae.
× rewrite equal.
rewrite hzrminus.
rewrite hzabsval0.
rewrite nattohzand0.
assert (hzabsval m ≠ 0).
{ apply hzabsvalneq0.
intro Q.
rewrite Q in p.
simpl in p.
apply p.
apply idpath.
}
apply lemmas.hzabsvalneq0. assumption.
}
apply fromempty.
apply ( isirreflhzlth ( nattohz ( hzabsval m ) ) ).
apply ( hzlehlthtrans _ ( nattohz ( hzabsval ( r' - r ) ) ) _ ).
+ apply nattohzandleh.
assumption.
+ assumption.
- assert ( r' = r ) as i.
{ assert ( r' - r = 0 ) as i0.
{ apply hzabsvaleq0.
assumption. }
rewrite <- ( hzplusl0 r ).
rewrite <- ( hzplusr0 r' ).
assert ( r' + ( r - r ) = ( 0 + r ) ) as i00.
{ change ( r - r ) with ( r + - r ).
rewrite ( hzpluscomm _ ( - r ) ).
rewrite <- hzplusassoc.
apply ( maponpaths ( fun x : _ ⇒ x + r ) ).
apply i0.
}
exact ( transportf ( fun x : _ ⇒ ( r' + x = ( 0 + r ) ) )
( ( hzrminus r ) ) i00 ).
}
apply i.
}
assert ( q' = q ) as g.
{
rewrite h in f'.
rewrite f in f'.
apply ( hzmultlcan q' q m ).
- intro i.
rewrite i in p.
simpl in p.
apply p.
apply idpath.
- apply ( hzplusrcan ( m × q' ) ( m × q ) r ).
apply pathsinv0.
apply f'.
}
assert ( dirprodpair q' r' = ( dirprodpair q r ) ) as j
by (apply pathsdirprod; assumption).
apply pathintotalfiber with ( p0 := j ).
assert ( iscontr ( n = m × q + r ×
( hzleh 0 r ×
hzlth r ( nattohz ( hzabsval m ) ) ) ) ) as contract.
{ change iscontr with ( isofhlevel 0 ).
apply isofhleveldirprod.
- split with f.
intro t.
apply isasethz.
- apply isofhleveldirprod.
+ split with p1p2p2dae.
intro t.
apply hzleh.
+ split with p2p2p2dae.
intro t.
apply hzlth.
}
apply proofirrelevancecontr.
assumption.
Defined.
Definition hzquotientmod ( p : hz ) ( x : hzneq 0 p ) : hz → hz :=
fun n : hz ⇒ pr1 ( pr1 ( divalgorithmexists n p x ) ).
Definition hzremaindermod ( p : hz ) ( x : hzneq 0 p ) : hz → hz :=
fun n : hz ⇒ pr2 ( pr1 ( divalgorithmexists n p x ) ).
Definition hzdivequationmod ( p : hz ) ( x : hzneq 0 p ) ( n : hz ) :
n = p × ( hzquotientmod p x n ) + ( hzremaindermod p x n ) :=
pr1 ( pr2 ( divalgorithmexists n p x ) ).
Definition hzleh0remaindermod ( p : hz ) ( x : hzneq 0 p ) ( n : hz ) :
hzleh 0 ( hzremaindermod p x n ) :=
pr1 ( pr2 ( pr2 ( divalgorithmexists n p x ) ) ).
Definition hzlthremaindermodmod ( p : hz ) ( x : hzneq 0 p ) ( n : hz ) :
hzlth ( hzremaindermod p x n ) ( nattohz ( hzabsval p ) ) :=
pr2 ( pr2 ( pr2 ( divalgorithmexists n p x ) ) ).
Definition isaprime ( p : hz ) : UU :=
hzlth 1 p ×
∀ m : hz, hzdiv m p → m = 1 ∨ m = p.
Lemma isapropisaprime ( p : hz ) :
isaprop ( isaprime p ).
Proof.
intros.
apply isofhleveldirprod.
- apply ( hzlth 1 p ).
- apply impred.
intro m.
apply impredfun.
apply ( m = 1 ∨ m = p ).
Defined.
Lemma isaprimetoneq0 { p : hz } ( x : isaprime p ) : hzneq 0 p.
Proof.
intros. intros f.
apply ( isirreflhzlth 0 ).
apply ( istranshzlth _ 1 _ ).
- apply hzlthnsn.
- rewrite f.
apply ( pr1 x ).
Defined.
Lemma hzqrtest ( m : hz ) ( x : hzneq 0 m ) ( a q r : hz ) :
a = ( m × q ) + r ×
( hzleh 0 r × hzlth r ( nattohz (hzabsval m ) ) ) →
q = hzquotientmod m x a × r = hzremaindermod m x a.
Proof.
intros d.
set ( k := tpair ( P := ( fun qr : hz × hz ⇒
a = m × ( pr1 qr ) + pr2 qr ×
( hzleh 0 ( pr2 qr ) × hzlth ( pr2 qr ) ( nattohz ( hzabsval m ) ) ) ) )
( dirprodpair q r ) d ).
assert ( k = pr1 ( divalgorithm a m x ) ) as f
by apply ( pr2 ( divalgorithm a m x ) ).
split.
- change q with ( pr1 ( pr1 k ) ).
rewrite f.
apply idpath.
- change r with ( pr2 ( pr1 k ) ).
rewrite f.
apply idpath.
Defined.
Definition hzqrtestq ( m : hz ) ( x : hzneq 0 m ) ( a q r : hz )
( d : a = ( m × q ) + r ×
( hzleh 0 r × hzlth r ( nattohz ( hzabsval m ) ) ) ) :=
pr1 ( hzqrtest m x a q r d ).
Definition hzqrtestr ( m : hz ) ( x : hzneq 0 m ) ( a q r : hz )
( d : a = ( m × q ) + r ×
( hzleh 0 r × hzlth r ( nattohz ( hzabsval m ) ) ) ) :=
pr2 ( hzqrtest m x a q r d ).
Lemma hzqrand0eq ( p : hz ) ( x : hzneq 0 p ) : 0 = ( p × 0 ) + 0.
Proof.
intros.
rewrite hzmultx0.
rewrite hzplusl0.
apply idpath.
Defined.
Lemma hzqrand0ineq ( p : hz ) ( x : hzneq 0 p ) :
hzleh 0 0 × hzlth 0 ( nattohz ( hzabsval p ) ).
Proof.
intros.
split.
- apply isreflhzleh.
- apply lemmas.hzabsvalneq0. assumption.
Defined.
Lemma hzqrand0q ( p : hz ) ( x : hzneq 0 p ) : hzquotientmod p x 0 = 0.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestq p x 0 0 0 ).
split.
- apply ( hzqrand0eq p x ).
- apply ( hzqrand0ineq p x ).
Defined.
Lemma hzqrand0r ( p : hz ) ( x : hzneq 0 p ) : hzremaindermod p x 0 = 0.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestr p x 0 0 0 ).
split.
- apply ( hzqrand0eq p x ).
- apply ( hzqrand0ineq p x ).
Defined.
Lemma hzqrand1eq ( p : hz ) ( is : isaprime p ) : 1 = ( ( p × 0 ) + 1 ).
Proof.
intros.
rewrite hzmultx0.
rewrite hzplusl0.
apply idpath.
Defined.
Lemma hzqrand1ineq ( p : hz ) ( is : isaprime p ) :
hzleh 0 1 × hzlth 1 ( nattohz ( hzabsval p ) ).
Proof.
intros.
split.
- apply hzlthtoleh.
apply hzlthnsn.
- rewrite hzabsvalgth0.
+ apply is.
+ apply ( istranshzgth _ 1 _ ).
× apply is.
× apply ( hzgthsnn 0 ).
Defined.
Lemma hzqrand1q ( p : hz ) ( is : isaprime p ) :
hzquotientmod p ( isaprimetoneq0 is ) 1 = 0.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestq p ( isaprimetoneq0 is ) 1 0 1 ).
split.
- apply ( hzqrand1eq p is ).
- apply ( hzqrand1ineq p is ).
Defined.
Lemma hzqrand1r ( p : hz ) ( is : isaprime p ) :
hzremaindermod p ( isaprimetoneq0 is ) 1 = 1.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestr p ( isaprimetoneq0 is ) 1 0 1 ).
split.
- apply ( hzqrand1eq p is ).
- apply ( hzqrand1ineq p is ).
Defined.
Lemma hzqrandselfeq ( p : hz ) ( x : hzneq 0 p ) : p = ( p × 1 + 0 ).
Proof.
intros.
rewrite hzmultr1.
rewrite hzplusr0.
apply idpath.
Defined.
Lemma hzqrandselfineq ( p : hz ) ( x : hzneq 0 p ) :
hzleh 0 0 × hzlth 0 ( nattohz ( hzabsval p ) ).
Proof.
split.
- apply isreflhzleh.
- apply lemmas.hzabsvalneq0.
assumption.
Defined.
Lemma hzqrandselfq ( p : hz ) ( x : hzneq 0 p ) : hzquotientmod p x p = 1.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestq p x p 1 0 ).
split.
- apply ( hzqrandselfeq p x ).
- apply ( hzqrandselfineq p x ).
Defined.
Lemma hzqrandselfr ( p : hz ) ( x : hzneq 0 p ) : hzremaindermod p x p = 0.
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestr p x p 1 0 ).
split.
- apply ( hzqrandselfeq p x ).
- apply ( hzqrandselfineq p x ).
Defined.
Lemma hzqrandpluseq ( p : hz ) ( x : hzneq 0 p ) ( a c : hz ) :
( a + c ) =
( ( p × ( hzquotientmod p x a + hzquotientmod p x c +
hzquotientmod p x ( hzremaindermod p x a + hzremaindermod p x c ) ) ) +
hzremaindermod p x ( ( hzremaindermod p x a ) + ( hzremaindermod p x c ) ) ).
Proof.
intros.
rewrite 2! hzldistr.
rewrite hzplusassoc.
rewrite <- ( hzdivequationmod p x ( hzremaindermod p x a + hzremaindermod p x c ) ).
rewrite hzplusassoc.
rewrite ( hzpluscomm ( hzremaindermod p x a ) ).
rewrite <- ( hzplusassoc ( p × hzquotientmod p x c ) ).
rewrite <- ( hzdivequationmod p x c ).
rewrite ( hzpluscomm c ).
rewrite <- hzplusassoc.
rewrite <- ( hzdivequationmod p x a ).
apply idpath.
Defined.
Lemma hzqrandplusineq ( p : hz ) ( x : hzneq 0 p ) ( a c : hz ) :
hzleh 0 ( hzremaindermod p x ( hzremaindermod p x a +
hzremaindermod p x c ) ) ×
hzlth ( hzremaindermod p x ( hzremaindermod p x a +
hzremaindermod p x c ) )
( nattohz ( hzabsval p ) ).
Proof.
intros.
split.
- apply hzleh0remaindermod.
- apply hzlthremaindermodmod.
Defined.
Lemma hzremaindermodandplus ( p : hz ) ( x : hzneq 0 p ) ( a c : hz ) :
hzremaindermod p x ( a + c ) =
hzremaindermod p x ( hzremaindermod p x a + hzremaindermod p x c ).
Proof.
intros.
apply pathsinv0.
apply ( hzqrtest p x ( a + c ) _ _ ( dirprodpair ( hzqrandpluseq p x a c )
( hzqrandplusineq p x a c ) ) ).
Defined.
Lemma hzquotientmodandplus ( p : hz ) ( x : hzneq 0 p ) ( a c : hz ) :
hzquotientmod p x ( a + c ) =
( hzquotientmod p x a + hzquotientmod p x c +
hzquotientmod p x ( hzremaindermod p x a + hzremaindermod p x c ) ).
Proof.
intros.
apply pathsinv0.
apply ( hzqrtest p x ( a + c ) _ _ ( dirprodpair ( hzqrandpluseq p x a c )
( hzqrandplusineq p x a c ) ) ).
Defined.
Lemma hzqrandtimeseq ( m : hz ) ( x : hzneq 0 m ) ( a b : hz ) :
( a × b ) =
( ( m × ( ( hzquotientmod m x ) a × ( hzquotientmod m x ) b × m +
( hzremaindermod m x b ) × ( hzquotientmod m x a ) +
( hzremaindermod m x a ) × ( hzquotientmod m x b ) +
( hzquotientmod m x ( hzremaindermod m x a × hzremaindermod m x b ) ) ) ) +
hzremaindermod m x ( hzremaindermod m x a × hzremaindermod m x b ) ).
Proof.
intros.
rewrite 3! hzldistr.
rewrite ( hzplusassoc _ _ ( hzremaindermod m x
( hzremaindermod m x a × hzremaindermod m x b ) ) ).
rewrite <- hzdivequationmod.
rewrite ( hzmultassoc _ _ m ).
rewrite <- ( hzmultassoc m _ ( hzquotientmod m x b × m ) ).
rewrite ( hzmultcomm _ m ).
change ( ((m × hzquotientmod m x a × (m × hzquotientmod m x b))%hz +
m × (hzremaindermod m x b × hzquotientmod m x a)%hz)%ring ) with
((m × hzquotientmod m x a × (m × hzquotientmod m x b)) +
m × (hzremaindermod m x b × hzquotientmod m x a) )%hz.
change ( a × b =
(((m × hzquotientmod m x a × (m × hzquotientmod m x b) +
m × (hzremaindermod m x b × hzquotientmod m x a))%hz +
m × (hzremaindermod m x a × hzquotientmod m x b)%hz)%ring +
hzremaindermod m x a × hzremaindermod m x b) ) with
( a × b =
(((m × hzquotientmod m x a × (m × hzquotientmod m x b) +
m × (hzremaindermod m x b × hzquotientmod m x a)) +
m × (hzremaindermod m x a × hzquotientmod m x b))%hz +
hzremaindermod m x a × hzremaindermod m x b) ).
rewrite ( hzplusassoc ( m × hzquotientmod m x a ×
( m × hzquotientmod m x b ) ) _ _ ).
rewrite ( hzpluscomm ( m × ( hzremaindermod m x b × hzquotientmod m x a ) )
( m × ( hzremaindermod m x a × hzquotientmod m x b ) ) ).
rewrite <- ( hzmultassoc m ( hzremaindermod m x a ) ( hzquotientmod m x b ) ).
rewrite ( hzmultcomm m ( hzremaindermod m x a ) ).
rewrite ( hzmultassoc ( hzremaindermod m x a ) m ( hzquotientmod m x b ) ).
rewrite <- ( hzplusassoc ( m × hzquotientmod m x a × ( m × hzquotientmod m x b ) )
( hzremaindermod m x a × ( m × hzquotientmod m x b ) ) _ ).
rewrite <- hzrdistr.
rewrite <- hzdivequationmod.
rewrite hzplusassoc.
rewrite ( hzmultcomm ( hzremaindermod m x b ) ( hzquotientmod m x a ) ).
rewrite <- ( hzmultassoc m ( hzquotientmod m x a ) ( hzremaindermod m x b ) ).
rewrite <- hzrdistr.
rewrite <- hzdivequationmod.
rewrite <- hzldistr.
rewrite <- hzdivequationmod.
apply idpath.
Defined.
Lemma hzqrandtimesineq ( m : hz ) ( x : hzneq 0 m ) ( a b : hz ) :
hzleh 0 ( hzremaindermod m x ( hzremaindermod m x a ×
hzremaindermod m x b ) ) ×
hzlth ( hzremaindermod m x ( hzremaindermod m x a ×
hzremaindermod m x b ) )
( nattohz ( hzabsval m ) ).
Proof.
intros.
split.
- apply hzleh0remaindermod.
- apply hzlthremaindermodmod.
Defined.
Lemma hzquotientmodandtimes ( m : hz ) ( x : hzneq 0 m ) ( a b : hz ) :
hzquotientmod m x ( a × b ) =
( ( hzquotientmod m x ) a × ( hzquotientmod m x ) b × m +
( hzremaindermod m x b ) × ( hzquotientmod m x a ) +
( hzremaindermod m x a ) × ( hzquotientmod m x b ) +
( hzquotientmod m x ( hzremaindermod m x a × hzremaindermod m x b ) ) ).
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestq m x ( a × b ) _ ( hzremaindermod m x
( hzremaindermod m x a × hzremaindermod m x b ) ) ).
split.
- apply hzqrandtimeseq.
- apply hzqrandtimesineq.
Defined.
Lemma hzremaindermodandtimes ( m : hz ) ( x : hzneq 0 m ) ( a b : hz ) :
hzremaindermod m x ( a × b ) =
( hzremaindermod m x ( hzremaindermod m x a × hzremaindermod m x b ) ).
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestr m x ( a × b )
( ( hzquotientmod m x ) a × ( hzquotientmod m x ) b × m +
( hzremaindermod m x b ) × ( hzquotientmod m x a ) +
( hzremaindermod m x a ) × ( hzquotientmod m x b ) +
( hzquotientmod m x ( hzremaindermod m x a ×
hzremaindermod m x b ) ) ) _ ).
split.
- apply hzqrandtimeseq.
- apply hzqrandtimesineq.
Defined.
Lemma hzqrandremaindereq ( m : hz ) ( is : hzneq 0 m ) ( n : hz ) :
hzremaindermod m is n =
( ( m × ( pr1 ( dirprodpair 0 ( hzremaindermod m is n ) ) ) +
( pr2 ( dirprodpair (@ringunel1 hz ) ( hzremaindermod m is n ) ) ) ) ).
Proof.
intros.
simpl.
rewrite hzmultx0.
rewrite hzplusl0.
apply idpath.
Defined.
Lemma hzqrandremainderineq ( m : hz ) ( is : hzneq 0 m ) ( n : hz ) :
hzleh ( @ringunel1 hz ) ( hzremaindermod m is n ) ×
hzlth ( hzremaindermod m is n ) ( nattohz ( hzabsval m ) ).
Proof.
intros.
split.
- apply hzleh0remaindermod.
- apply hzlthremaindermodmod.
Defined.
Lemma hzremaindermoditerated ( m : hz ) ( is : hzneq 0 m ) ( n : hz ) :
hzremaindermod m is ( hzremaindermod m is n ) = ( hzremaindermod m is n ).
Proof.
intros.
apply pathsinv0.
apply ( hzqrtestr m is ( hzremaindermod m is n ) 0 ( hzremaindermod m is n ) ).
split.
- apply hzqrandremaindereq.
- apply hzqrandremainderineq.
Defined.
Lemma hzqrandremainderq ( m : hz ) ( is : hzneq 0 m ) ( n : hz ) :
0 = hzquotientmod m is ( hzremaindermod m is n ).
Proof.
intros.
apply ( hzqrtestq m is ( hzremaindermod m is n ) 0 ( hzremaindermod m is n ) ).
split.
- apply hzqrandremaindereq.
- apply hzqrandremainderineq.
Defined.
Definition iscommonhzdiv ( k n m : hz ) :=
hzdiv k n × hzdiv k m.
Lemma isapropiscommonhzdiv ( k n m : hz ) : isaprop ( iscommonhzdiv k n m ).
Proof.
intros.
unfold isaprop.
apply isofhleveldirprod.
- apply hzdiv.
- apply hzdiv.
Defined.
Definition hzgcd ( n m : hz ) : UU :=
∑ k : hz, iscommonhzdiv k n m ×
∀ l : hz, iscommonhzdiv l n m → hzleh l k.
Lemma isaprophzgcd0 ( k n m : hz ) :
isaprop ( iscommonhzdiv k n m ×
∀ l : hz, iscommonhzdiv l n m → hzleh l k ).
Proof.
intros.
apply isofhleveldirprod.
- apply isapropiscommonhzdiv.
- apply impred.
intro t.
apply impredfun.
apply hzleh.
Defined.
Lemma isaprophzgcd ( n m : hz ) : isaprop ( hzgcd n m ).
Proof.
intros. intros k l.
assert ( isofhlevel 2 ( hzgcd n m ) ) as aux.
{ apply isofhleveltotal2.
- apply isasethz.
- intros x.
apply hlevelntosn.
apply isofhleveldirprod.
+ apply isapropiscommonhzdiv.
+ apply impred.
intro t.
apply impredfun.
apply ( hzleh t x ).
}
assert ( k = l ) as f.
{ destruct k as [ k pq ].
destruct pq as [ p q ].
destruct l as [ l pq ].
destruct pq as [ p' q' ].
assert ( k = l ) as f0.
{ apply isantisymmhzleh.
- apply q'.
assumption.
- apply q.
assumption.
}
apply pathintotalfiber with ( p0 := f0 ).
assert ( isaprop ( iscommonhzdiv l n m ×
∀ x : hz, iscommonhzdiv x n m → hzleh x l ) ) as is.
{ apply isofhleveldirprod.
- apply isapropiscommonhzdiv.
- apply impred.
intro t.
apply impredfun.
apply ( hzleh t l ).
}
apply is.
}
split with f.
intro g.
destruct k as [ k pq ].
destruct pq as [ p q ].
destruct l as [ l pq ].
destruct pq as [ p' q' ].
apply aux.
Defined.
Lemma hzdivandmultl ( a c d : hz ) ( p : hzdiv d a ) : hzdiv d ( c × a ).
Proof.
intros. intros P s.
use (hinhuniv _ p).
intro k.
destruct k as [ k f ].
apply s.
unfold hzdiv0.
split with ( c × k ).
rewrite ( hzmultcomm d ).
rewrite hzmultassoc.
unfold hzdiv0 in f.
rewrite ( hzmultcomm k ).
rewrite f.
apply idpath.
Defined.
Lemma hzdivandmultr ( a c d : hz ) ( p : hzdiv d a ) : hzdiv d ( a × c ).
Proof.
intros.
rewrite hzmultcomm.
apply hzdivandmultl.
assumption.
Defined.
Lemma hzdivandminus ( a d : hz ) ( p : hzdiv d a ) : hzdiv d ( - a ).
Proof.
intros. intros P s.
use (hinhuniv _ p).
intro k.
destruct k as [ k f ].
apply s.
split with ( - k ).
unfold hzdiv0.
unfold hzdiv0 in f.
rewrite ( ringrmultminus hz ).
apply maponpaths.
assumption.
Defined.
Definition natgcd ( m n : nat ) : ( natneq 0%nat n ) →
( natleh m n ) →
( hzgcd ( nattohz n ) ( nattohz m ) ).
Proof.
revert m n.
set ( E := ( fun m : nat ⇒ ∀ n : nat,
( natneq 0%nat n ) →
( natleh m n ) →
(hzgcd ( nattohz n ) ( nattohz m ) ) ) ).
assert ( ∀ x : nat, E x ) as goal.
{ apply stronginduction.
-
intros n x0 x1.
split with ( nattohz n ).
split.
+ unfold iscommonhzdiv.
split.
× unfold hzdiv.
intros P s.
apply s.
unfold hzdiv0.
split with 1.
rewrite hzmultr1.
apply idpath.
× unfold hzdiv.
intros P s.
apply s.
unfold hzdiv0.
split with 0.
rewrite hzmultx0.
rewrite nattohzand0.
apply idpath.
+ intros l t.
destruct t as [ t0 t1 ].
destruct ( hzgthorleh l 0 ) as [ left | right ].
× rewrite <- hzabsvalgth0.
-- apply nattohzandleh.
unfold hzdiv in t0.
use (hinhuniv _ t0).
intro t2.
destruct t2 as [ k t2 ].
unfold hzdiv0 in t2.
assert ( natleh ( hzabsval l ) n ⨿ ( n = 0%nat ) ) as C.
{ apply ( natdivleh ( hzabsval l ) n ( hzabsval k ) ).
apply ( isinclisinj isinclnattohz ).
rewrite nattohzandmult.
rewrite 2! hzabsvalgeh0.
++ assumption.
++ assert ( hzgeh ( l × k ) ( l × 0 ) ) as i.
{ rewrite hzmultx0.
rewrite t2.
change 0 with ( nattohz 0%nat ).
apply nattohzandgeh.
apply x1.
}
apply ( hzgehandmultlinv _ _ l ); assumption.
++ apply hzgthtogeh.
assumption.
}
destruct C as [ C0 | C1 ].
++ assumption.
++ apply fromempty.
rewrite C1 in x0.
apply x0.
-- assumption.
× apply ( istranshzleh _ 0 _ ).
assumption.
change 0 with ( nattohz 0%nat ).
apply nattohzandleh.
assumption.
-
intros m p q. intros n i j.
assert ( hzlth 0 ( nattohz m ) ) as p'.
{ change 0 with ( nattohz 0%nat ).
apply nattohzandlth.
apply natneq0togth0.
apply p.
}
set ( a := divalgorithmnonneg n m p' ).
destruct a as [ qr a ].
destruct qr as [ quot rem ].
destruct a as [ f a ].
destruct a as [ a b ].
simpl in b.
simpl in f.
assert ( natlth ( hzabsval rem ) m ) as p''.
{ rewrite <- ( hzabsvalandnattohz m ).
apply nattohzandlthinv.
rewrite 2! hzabsvalgeh0.
+ assumption.
+ apply hzgthtogeh.
apply ( hzgthgehtrans _ rem ); assumption.
+ assumption.
}
assert ( natleh ( hzabsval rem ) n ) as i''.
{ apply natlthtoleh.
apply nattohzandlthinv.
rewrite hzabsvalgeh0.
+ apply ( hzlthlehtrans _ ( nattohz m ) _ ).
× assumption.
× apply nattohzandleh.
assumption.
+ assumption.
}
assert ( natneq 0%nat m ) as p'''.
{ apply issymm_natneq.
assumption.
}
destruct ( q ( hzabsval rem ) p'' m p''' ( natlthtoleh _ _ p'' ) )
as [ rr c ].
destruct c as [ c0 c1 ].
split with rr.
split.
+ split.
× apply ( hzdivlinearcombright ( nattohz n )
( nattohz m × quot ) rem rr f ).
-- apply hzdivandmultr.
exact ( pr1 c0 ).
-- rewrite hzabsvalgeh0 in c0.
exact ( pr2 c0 ).
assumption.
× exact ( pr1 c0 ).
+ intros l o.
apply c1.
split.
× exact ( pr2 o ).
× rewrite hzabsvalgeh0.
-- apply ( hzdivlinearcombleft ( nattohz n )
( nattohz m × quot ) rem l f ).
++ exact ( pr1 o ).
++ apply hzdivandmultr.
exact ( pr2 o ).
-- assumption.
}
assumption.
Defined.
Lemma hzgcdandminusl ( m n : hz ) : hzgcd m n = hzgcd ( - m ) n.
Proof.
intros.
assert ( hProppair ( hzgcd m n ) ( isaprophzgcd _ _ )
= ( hProppair ( hzgcd ( - m ) n ) ( isaprophzgcd _ _ ) ) ) as x.
{ apply hPropUnivalence.
- intro i.
destruct i as [ a i ].
destruct i as [ i0 i1 ].
destruct i0 as [ j0 j1 ].
split with a.
split.
+ split.
× use (hinhuniv _ j0).
intro k.
destruct k as [ k f ].
unfold hzdiv0 in f.
intros P s.
apply s.
split with ( - k ).
unfold hzdiv0.
rewrite ( ringrmultminus hz ).
apply maponpaths.
assumption.
× assumption.
+ intros l f.
apply i1.
split.
× use (hinhuniv _ ( pr1 f )).
intro k.
destruct k as [ k g ].
unfold hzdiv0 in g.
intros P s.
apply s.
split with ( - k ).
unfold hzdiv0.
rewrite ( ringrmultminus hz ).
rewrite <- ( ringminusminus hz m).
apply maponpaths.
assumption.
× exact ( pr2 f ).
- intro i.
destruct i as [ a i ].
destruct i as [ i0 i1 ].
destruct i0 as [ j0 j1 ].
split with a.
split.
+ split.
× use (hinhuniv _ j0).
intro k.
destruct k as [ k f ].
unfold hzdiv0 in f.
intros P s.
apply s.
split with ( - k ).
unfold hzdiv0.
rewrite ( ringrmultminus hz ).
rewrite <- ( ringminusminus hz m ).
apply maponpaths.
assumption.
× assumption.
+ intros l f.
apply i1.
split.
× use (hinhuniv _ ( pr1 f )).
intro k.
destruct k as [ k g ].
unfold hzdiv0 in g.
intros P s.
apply s.
split with ( - k ).
unfold hzdiv0.
rewrite (ringrmultminus hz ).
apply maponpaths.
assumption.
× exact ( pr2 f ).
}
apply ( pathintotalpr1 x ).
Defined.
Lemma hzgcdsymm ( m n : hz ) : hzgcd m n = hzgcd n m.
Proof.
intros.
assert ( hProppair ( hzgcd m n ) ( isaprophzgcd _ _ ) =
( hProppair ( hzgcd n m ) ( isaprophzgcd _ _ ) ) ) as x.
{ apply hPropUnivalence.
- intro i.
destruct i as [ a i ].
destruct i as [ i0 i1 ].
destruct i0 as [ j0 j1 ].
split with a.
split.
+ split; assumption.
+ intros l o.
apply i1.
split.
× exact ( pr2 o ).
× exact ( pr1 o ).
- intro i.
destruct i as [ a i ].
destruct i as [ i0 i1 ].
destruct i0 as [ j0 j1 ].
split with a.
split.
+ split; assumption.
+ intros l o.
apply i1.
split.
× exact ( pr2 o ).
× exact ( pr1 o ).
}
apply ( pathintotalpr1 x ).
Defined.
Lemma hzgcdandminusr ( m n : hz ) : hzgcd m n = hzgcd m ( - n ).
Proof.
intros.
rewrite 2! ( hzgcdsymm m ).
rewrite hzgcdandminusl.
apply idpath.
Defined.
Definition euclidean ( n m : hz ) ( i : hzneq 0 n )
( p : natleh ( hzabsval m ) ( hzabsval n ) ) :
hzgcd n m.
Proof.
intros.
assert ( natneq 0%nat ( hzabsval n ) ) as j.
{
apply issymm_natneq.
apply hzabsvalneq0.
intro x.
rewrite x in i.
simpl in i.
apply i.
apply idpath.
}
set ( a := natgcd ( hzabsval m ) ( hzabsval n ) j p ).
destruct ( hzlthorgeh 0 n ) as [ left_n | right_n ].
- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
+ rewrite 2! ( hzabsvalgth0 ) in a; assumption.
+ rewrite hzabsvalgth0 in a.
× rewrite hzabsvalleh0 in a.
-- rewrite hzgcdandminusr.
assumption.
-- assumption.
× assumption.
- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
+ rewrite ( hzabsvalgth0 left_m ) in a.
rewrite hzabsvalleh0 in a.
× rewrite hzgcdandminusl.
assumption.
× assumption.
+ rewrite 2! hzabsvalleh0 in a.
× rewrite hzgcdandminusl.
rewrite hzgcdandminusr.
assumption.
× assumption.
× assumption.
Defined.
Theorem euclideanalgorithm ( n m : hz ) ( i : hzneq 0 n ) :
iscontr ( hzgcd n m ).
Proof.
intros.
destruct ( natgthorleh ( hzabsval m ) ( hzabsval n ) ) as [ left | right ].
- assert ( hzneq 0 m ) as i'.
{ intro f.
apply ( negnatlthn0 ( hzabsval n ) ).
rewrite <- f in left.
rewrite hzabsval0 in left.
assumption.
}
set ( a := euclidean m n i' ( natlthtoleh _ _ left ) ).
rewrite hzgcdsymm in a.
split with a.
intro.
apply isaprophzgcd.
- split with ( euclidean n m i right ).
intro.
apply isaprophzgcd.
Defined.
Definition gcd ( n m : hz ) ( i : hzneq 0 n ) : hz :=
pr1 ( pr1 ( euclideanalgorithm n m i ) ).
Definition gcdiscommondiv ( n m : hz ) ( i : hzneq 0 n ) :
iscommonhzdiv (gcd n m i) n m :=
pr1 ( pr2 ( pr1 ( euclideanalgorithm n m i ) ) ).
Definition gcdisgreatest ( n m : hz ) ( i : hzneq 0 n ):
∏ l : hz, iscommonhzdiv l n m → hzleh l (gcd n m i) :=
pr2 ( pr2 ( pr1 ( euclideanalgorithm n m i ) ) ).
Lemma hzdivand0 ( n : hz ) : hzdiv n 0.
Proof.
intros. intros P s.
apply s.
split with 0.
unfold hzdiv0.
apply hzmultx0.
Defined.
Lemma nozerodiv ( n : hz ) ( i : hzneq 0 n ) : neg ( hzdiv 0 n ).
Proof.
intros. intro p.
unfold hzneq in i. simpl in i.
apply i.
apply ( p ( hProppair ( 0 = n ) ( isasethz 0 n ) ) ).
intro t.
destruct t as [ k f ].
unfold hzdiv0 in f.
rewrite ( hzmult0x ) in f.
assumption.
Defined.
Lemma commonhzdivsignswap ( k n m : hz ) ( p : iscommonhzdiv k n m ) :
iscommonhzdiv ( - k ) n m .
Proof.
intros.
destruct p as [ p0 p1 ].
split.
- use (hinhuniv _ p0).
intro t. intros P s.
apply s.
destruct t as [ l f ].
unfold hzdiv0 in f.
split with ( - l ).
unfold hzdiv0.
change ( k × l ) with ( k × l )%ring in f.
rewrite <- ringmultminusminus in f.
assumption.
- use (hinhuniv _ p1).
intro t.
destruct t as [ l f ].
unfold hzdiv0 in f.
intros P s.
apply s.
split with ( - l ).
unfold hzdiv0.
change ( k × l ) with ( k × l )%ring in f.
rewrite <- ringmultminusminus in f.
assumption.
Defined.
Lemma gcdneq0 ( n m : hz ) ( i : hzneq 0 n ) : hzneq 0 ( gcd n m i ).
Proof.
intros.
intro f.
apply ( nozerodiv n ).
- assumption.
- rewrite f.
exact ( pr1 ( gcdiscommondiv n m i ) ).
Defined.
Lemma gcdpositive ( n m : hz ) ( i : hzneq 0 n ) : hzlth 0 ( gcd n m i ).
Proof.
intros.
destruct ( hzneqchoice 0 ( gcd n m i )
( gcdneq0 n m i ) ) as [ left | right ].
- apply fromempty.
assert ( hzleh ( - ( gcd n m i ) ) ( gcd n m i ) ) as i0.
{ apply ( gcdisgreatest n m i ).
apply commonhzdivsignswap.
exact ( gcdiscommondiv n m i ).
}
apply ( isirreflhzlth 0 ).
apply ( istranshzlth _ ( - ( gcd n m i ) ) _ ).
+ apply hzlth0andminus.
assumption.
+ apply ( hzlehlthtrans _ ( gcd n m i ) _ ); assumption.
- assumption.
Defined.
Lemma gcdanddiv ( n m : hz ) ( i : hzneq 0 n ) ( p : hzdiv n m ) :
( gcd n m i = n ) ⨿ ( gcd n m i = - n ).
Proof.
intros.
destruct ( hzneqchoice 0 n i ) as [ left | right ].
- apply ii2.
apply isantisymmhzleh.
+ use (hinhuniv _
( hzdivhzabsval ( gcd n m i ) n ( pr1 ( gcdiscommondiv n m i ) ) )).
intro c'.
destruct c' as [ c0 | c1 ].
× rewrite <- hzabsvalgeh0.
-- rewrite <- hzabsvallth0.
++ apply nattohzandleh.
assumption.
++ assumption.
-- apply hzgthtogeh.
apply ( gcdpositive n m i ).
× apply fromempty.
assert ( n = 0 ) as f.
{ rewrite hzabsvaleq0.
-- apply idpath.
-- assumption.
}
unfold hzneq in i. apply i.
apply pathsinv0.
assumption.
+ apply gcdisgreatest.
apply commonhzdivsignswap.
split.
× apply hzdivisrefl.
× assumption.
- apply ii1.
apply isantisymmhzleh.
+ use (hinhuniv _
( hzdivhzabsval ( gcd n m i ) n ( pr1 ( gcdiscommondiv n m i ) ) )).
intro c'.
destruct c' as [ c0 | c1 ].
× rewrite <- hzabsvalgth0.
-- assert ( n = nattohz ( hzabsval n ) ) as f.
{ apply pathsinv0.
apply hzabsvalgth0.
assumption.
}
assert ( hzleh ( nattohz ( hzabsval ( gcd n m i ) ) )
( nattohz ( hzabsval n ) ) ) as j.
{ apply nattohzandleh.
assumption. }
exact ( transportf ( fun x ⇒
hzleh ( nattohz ( hzabsval ( gcd n m i ) ) ) x ) ( pathsinv0 f ) j ).
-- apply gcdpositive.
× apply fromempty.
unfold hzneq in i. apply i.
apply pathsinv0.
rewrite hzabsvaleq0.
apply idpath.
assumption.
+ apply ( gcdisgreatest n m i ).
split.
× apply hzdivisrefl.
× assumption.
Defined.
Lemma gcdand0 ( n : hz ) ( i : hzneq 0 n ) :
( gcd n 0 i = n ) ⨿ ( gcd n 0 i = - n ).
Proof.
intros.
apply gcdanddiv.
apply hzdivand0.
Defined.
Lemma natbezoutstrong ( m n : nat ) ( i : hzneq 0 ( nattohz n ) ) :
∑ ab : hz × hz,
gcd ( nattohz n ) ( nattohz m ) i =
pr1 ab × nattohz n + pr2 ab × nattohz m.
Proof.
revert m n i.
set ( E := ( fun m : nat ⇒ ∀ n : nat, ∀ i : hzneq 0 ( nattohz n ),
∑ ab : hz × hz,
gcd ( nattohz n ) ( nattohz m ) i =
pr1 ab × nattohz n + pr2 ab × nattohz m ) ).
assert ( ∀ x : nat, E x ) as goal.
{ apply stronginduction.
-
unfold E.
intros.
split with ( dirprodpair 1 0 ).
simpl.
rewrite nattohzand0.
destruct ( gcdand0 ( nattohz n ) i ) as [ left | right ].
+ rewrite hzmultl1.
rewrite hzplusr0.
assumption.
+ apply fromempty.
apply ( isirreflhzlth ( gcd ( nattohz n ) 0 i ) ).
apply ( istranshzlth _ 0 _ ).
× rewrite right.
apply hzgth0andminus.
change 0 with ( nattohz 0%nat ).
apply nattohzandgth.
apply natneq0togth0.
use (pr1 (natneq_iff_neq _ _)). intro f.
unfold hzneq in i. apply i.
rewrite f.
apply idpath.
× apply gcdpositive.
-
intros m x y. intros n i.
assert ( hzneq 0 ( nattohz m ) ) as p.
{ intro f.
set (aux := pr2 (natneq_iff_neq _ _) x). apply aux.
apply pathsinv0.
rewrite <- hzabsvalandnattohz.
change 0%nat with ( hzabsval ( nattohz 0%nat ) ).
apply maponpaths.
assumption.
}
set ( r := hzremaindermod ( nattohz m ) p ( nattohz n ) ).
set ( q := hzquotientmod ( nattohz m ) p ( nattohz n ) ).
assert ( natlth (hzabsval r ) m ) as p'.
{ rewrite <- ( hzabsvalandnattohz m ).
apply hzabsvalandlth.
+ exact ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ).
+ unfold r.
rewrite <- ( hzabsvalgeh0 ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ) ).
apply nattohzandlth.
assert ( natlth ( hzabsval ( hzremaindermod ( nattohz m ) p ( nattohz n ) ) )
( hzabsval ( nattohz m ) ) ) as ii.
{ apply hzabsvalandlth.
× exact ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ).
× assert ( nattohz ( hzabsval ( nattohz m ) ) = nattohz m ) as f.
{ apply maponpaths.
apply hzabsvalandnattohz.
}
exact ( transportf ( fun x ⇒
hzlth
( hzremaindermod ( nattohz m ) p ( nattohz n ) ) x ) f
( hzlthremaindermodmod ( nattohz m ) p ( nattohz n ) )
).
}
exact ( transportf ( fun x ⇒
natlth
( hzabsval ( hzremaindermod ( nattohz m ) p ( nattohz n ) ) )
x )
( hzabsvalandnattohz m ) ii ).
}
set ( c := y ( hzabsval r ) p' m p ).
destruct c as [ ab f ].
destruct ab as [ a b ].
simpl in f.
split with ( dirprodpair b ( a - b × q ) ).
assert ( gcd ( nattohz m ) ( nattohz ( hzabsval r ) ) p =
( gcd ( nattohz n ) ( nattohz m ) i ) ) as g.
{ apply isantisymmhzleh.
+ apply ( gcdisgreatest ( nattohz n ) ( nattohz m ) i ).
split.
× apply ( hzdivlinearcombright ( nattohz n )
( nattohz m × hzquotientmod ( nattohz m ) p ( nattohz n ) ) r ).
-- exact ( hzdivequationmod ( nattohz m ) p ( nattohz n ) ).
-- apply hzdivandmultr.
apply gcdiscommondiv.
-- unfold r.
rewrite ( hzabsvalgeh0 ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ) ) .
apply ( pr2 ( gcdiscommondiv ( nattohz m )
( hzremaindermod ( nattohz m ) p ( nattohz n ) ) p ) ).
× apply gcdiscommondiv.
+ apply gcdisgreatest.
split.
× apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
× apply ( hzdivlinearcombleft ( nattohz n ) ( nattohz m ×
hzquotientmod ( nattohz m ) p ( nattohz n ) ) ( nattohz ( hzabsval r ) ) ).
-- unfold r.
rewrite ( hzabsvalgeh0 ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ) ).
exact ( hzdivequationmod ( nattohz m ) p ( nattohz n ) ).
-- apply gcdiscommondiv.
-- apply hzdivandmultr.
apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
}
rewrite <- g.
rewrite f.
simpl.
assert ( nattohz ( hzabsval r ) = ( nattohz n - ( q × nattohz m ) ) ) as h.
{ rewrite ( hzdivequationmod ( nattohz m ) p ( nattohz n ) ).
change ( hzquotientmod ( nattohz m ) p ( nattohz n ) ) with q.
change ( hzremaindermod ( nattohz m ) p ( nattohz n ) ) with r.
rewrite hzpluscomm.
change (r + nattohz m × q - q × nattohz m) with
( ( r + nattohz m × q ) + ( - ( q × nattohz m ) ) ).
rewrite hzmultcomm.
rewrite hzplusassoc.
intermediate_path (r + 0).
+ rewrite hzplusr0.
apply hzabsvalgeh0.
apply ( hzleh0remaindermod ( nattohz m ) p ( nattohz n ) ).
+ apply maponpaths.
rewrite <- (hzrminus (q × nattohz m)).
apply idpath.
}
rewrite h.
change ( (nattohz n - q × nattohz m) ) with
( (nattohz n + ( - ( q × nattohz m) ) ) ) at 1.
rewrite ( ringldistr hz ).
rewrite <- hzplusassoc.
rewrite ( hzpluscomm ( a × nattohz m ) ).
rewrite ringrmultminus.
rewrite <- hzmultassoc.
rewrite <- ringlmultminus.
rewrite hzplusassoc.
rewrite <- ( ringrdistr hz ).
change (b × nattohz n + (a - b × q) × nattohz m) with
((b × nattohz n)%ring + ((a + - (b × q)%hz) × nattohz m)%ring).
apply idpath.
}
apply goal.
Defined.
Lemma divandhzabsval ( n : hz ) : hzdiv n ( nattohz ( hzabsval n ) ).
Proof.
intros.
destruct ( hzlthorgeh 0 n ) as [ left | right ].
- intros P s.
apply s.
split with 1.
unfold hzdiv0.
rewrite hzmultr1.
rewrite hzabsvalgth0.
+ apply idpath.
+ assumption.
- intros P s.
apply s.
split with ( - 1%hz ).
unfold hzdiv0.
rewrite ( ringrmultminus hz ).
rewrite hzmultr1.
rewrite hzabsvalleh0.
+ apply idpath.
+ assumption.
Defined.
Lemma bezoutstrong ( m n : hz ) ( i : hzneq 0 n ) :
∑ ab : hz × hz, gcd n m i = pr1 ab × n + pr2 ab × m.
Proof.
intros.
assert ( hzneq 0 ( nattohz ( hzabsval n ) ) ) as i'.
{ intro f.
unfold hzneq in i. apply i.
destruct ( hzneqchoice 0 n i ) as [ left | right ].
- rewrite hzabsvallth0 in f.
+ rewrite <- ( ringminusminus hz ).
change 0 with ( - - 0 ).
apply maponpaths.
assumption.
+ assumption.
- rewrite hzabsvalgth0 in f; assumption.
}
set ( c := (natbezoutstrong (hzabsval m) (hzabsval n) i')).
destruct c as [ ab f ].
destruct ab as [ a b ].
simpl in f.
assert ( gcd n m i =
gcd ( nattohz ( hzabsval n ) ) ( nattohz ( hzabsval m ) ) i' ) as g.
{ destruct ( hzneqchoice 0 n i ) as [ left_n | right_n ].
- apply isantisymmhzleh.
+ apply gcdisgreatest.
split.
× rewrite hzabsvallth0.
-- apply hzdivandminus.
apply gcdiscommondiv.
-- assumption.
× destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
-- rewrite hzabsvalgth0.
++ apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
++ assumption.
-- rewrite hzabsvalleh0.
++ apply hzdivandminus.
apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
++ assumption.
+ apply gcdisgreatest.
split.
× apply ( hzdivistrans _ ( nattohz ( hzabsval n ) ) _ ).
-- apply gcdiscommondiv.
-- rewrite hzabsvallth0.
++ rewrite <- ( ringminusminus hz n ).
apply hzdivandminus.
rewrite ( ringminusminus hz n ).
apply hzdivisrefl.
++ assumption.
× apply ( hzdivistrans _ ( nattohz ( hzabsval m ) ) _ ).
-- apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
-- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
++ rewrite hzabsvalgth0.
** apply hzdivisrefl.
** assumption.
++ rewrite hzabsvalleh0.
rewrite <- ( ringminusminus hz m ).
apply hzdivandminus.
rewrite ( ringminusminus hz m ).
apply hzdivisrefl.
assumption.
- apply isantisymmhzleh.
+ apply gcdisgreatest.
split.
× rewrite hzabsvalgth0.
-- apply gcdiscommondiv.
-- assumption.
× apply ( hzdivistrans _ ( nattohz ( hzabsval m ) ) _ ).
-- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
++ rewrite hzabsvalgth0.
** apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
** assumption.
++ rewrite hzabsvalleh0.
** apply hzdivandminus.
apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
** assumption.
-- apply hzdivisrefl.
+ apply gcdisgreatest.
split.
× apply ( hzdivistrans _ ( nattohz ( hzabsval n ) ) _ ).
-- apply gcdiscommondiv.
-- rewrite hzabsvalgth0.
++ apply hzdivisrefl.
++ assumption.
× apply ( hzdivistrans _ ( nattohz ( hzabsval m ) ) _ ).
-- apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
-- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
++ rewrite hzabsvalgth0.
** apply hzdivisrefl.
** assumption.
++ rewrite hzabsvalleh0.
** rewrite <- ( ringminusminus hz m ).
apply hzdivandminus.
rewrite ( ringminusminus hz m ).
apply hzdivisrefl.
** assumption.
}
destruct ( hzneqchoice 0 n i ) as [ left_n | right_n ].
- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
+ split with ( dirprodpair ( - a ) b ).
simpl.
assert ( - a × n + b × m =
( a × nattohz ( hzabsval n ) + b × nattohz ( hzabsval m ) ) ) as l.
{ rewrite hzabsvallth0.
× rewrite hzabsvalgth0.
-- rewrite ( ringlmultminus hz ).
rewrite <- ( ringrmultminus hz ).
apply idpath.
-- assumption.
× assumption.
}
rewrite l.
rewrite g.
exact f.
+ split with ( dirprodpair ( - a ) ( - b ) ).
simpl.
rewrite 2! ( ringlmultminus hz ).
rewrite <- 2! ( ringrmultminus hz ).
rewrite <- hzabsvallth0.
× rewrite <- hzabsvalleh0.
-- rewrite g.
exact f.
-- assumption.
× assumption.
- destruct ( hzlthorgeh 0 m ) as [ left_m | right_m ].
+ split with ( dirprodpair a b ).
simpl.
rewrite g.
rewrite f.
rewrite 2! hzabsvalgth0.
× apply idpath.
× assumption.
× assumption.
+ split with ( dirprodpair a ( - b ) ).
rewrite g.
rewrite f.
simpl.
rewrite hzabsvalgth0.
× rewrite hzabsvalleh0.
-- rewrite ( ringrmultminus hz ).
rewrite <- ( ringlmultminus hz ).
apply idpath.
-- assumption.
× assumption.
Defined.
Lemma hzmodisaprop ( p : hz ) ( x : hzneq 0 p ) ( n m : hz ) :
isaprop ( hzremaindermod p x n = hzremaindermod p x m ).
Proof.
intros.
apply isasethz.
Defined.
Definition hzmod ( p : hz ) ( x : hzneq 0 p ) : hrel hz.
Proof.
intros n m.
exact ( hProppair ( hzremaindermod p x n = hzremaindermod p x m )
( hzmodisaprop p x n m ) ).
Defined.
Lemma hzmodisrefl ( p : hz ) ( x : hzneq 0 p ) : isrefl ( hzmod p x ).
Proof.
intros.
unfold isrefl.
intro n.
unfold hzmod.
assert ( hzremaindermod p x n = hzremaindermod p x n ) as a
by apply idpath.
apply a.
Defined.
Lemma hzmodissymm ( p : hz ) ( x : hzneq 0 p ) : issymm ( hzmod p x ).
Proof.
intros.
unfold issymm.
intros n m.
unfold hzmod.
intro v.
assert ( hzremaindermod p x m = hzremaindermod p x n ) as a
by exact ( pathsinv0 v ).
apply a.
Defined.
Lemma hzmodistrans ( p : hz ) ( x : hzneq 0 p ) : istrans ( hzmod p x ).
Proof.
intros.
unfold istrans.
intros n m k. intros u v.
unfold hzmod.
unfold hzmod in u.
unfold hzmod in v.
assert ( hzremaindermod p x n = hzremaindermod p x k ) as a
by exact ( pathscomp0 u v ).
apply a.
Defined.
Lemma hzmodiseqrel ( p : hz ) ( x : hzneq 0 p ) : iseqrel ( hzmod p x ).
Proof.
intros.
apply iseqrelconstr.
- exact ( hzmodistrans p x ).
- exact ( hzmodisrefl p x ).
- exact ( hzmodissymm p x ).
Defined.
Lemma hzmodcompatmultl ( p : hz ) ( x : hzneq 0 p ) :
∀ a b c : hz, hzmod p x a b → hzmod p x ( c × a ) ( c × b ).
Proof.
intros a b c v.
unfold hzmod.
change (hzremaindermod p x (c × a) = hzremaindermod p x (c × b)).
rewrite hzremaindermodandtimes.
rewrite v.
rewrite <- hzremaindermodandtimes.
apply idpath.
Defined.
Lemma hzmodcompatmultr ( p : hz ) ( x : hzneq 0 p ) :
∀ a b c : hz, hzmod p x a b → hzmod p x ( a × c ) ( b × c ).
Proof.
intros a b c v.
rewrite hzmultcomm.
rewrite ( hzmultcomm b ).
apply hzmodcompatmultl.
assumption.
Defined.
Lemma hzmodcompatplusl ( p : hz ) ( x : hzneq 0 p ) :
∀ a b c : hz, hzmod p x a b → hzmod p x ( c + a ) ( c + b ).
Proof.
intros a b c v.
unfold hzmod.
change ( hzremaindermod p x ( c + a ) = hzremaindermod p x ( c + b ) ).
rewrite hzremaindermodandplus.
rewrite v.
rewrite <- hzremaindermodandplus.
apply idpath.
Defined.
Lemma hzmodcompatplusr ( p : hz ) ( x : hzneq 0 p ) :
∀ a b c : hz, hzmod p x a b → hzmod p x ( a + c ) ( b + c ).
Proof.
intros a b c v.
rewrite hzpluscomm.
rewrite ( hzpluscomm b ).
apply hzmodcompatplusl.
assumption.
Defined.
Lemma hzmodisringeqrel ( p : hz ) ( x : hzneq 0 p ) : ringeqrel ( X := hz ).
Proof.
intros.
split with ( tpair ( hzmod p x ) ( hzmodiseqrel p x ) ).
split.
- split.
+ apply hzmodcompatplusl.
+ apply hzmodcompatplusr.
- split.
+ apply hzmodcompatmultl.
+ apply hzmodcompatmultr.
Defined.
Definition hzmodp ( p : hz ) ( x : hzneq 0 p ) :=
commringquot ( hzmodisringeqrel p x ).
Lemma isdeceqhzmodp ( p : hz ) ( x : hzneq 0 p ) : isdeceq ( hzmodp p x ).
Proof.
intros.
apply ( isdeceqsetquot ( hzmodisringeqrel p x ) ).
intros a b.
unfold isdecprop.
- destruct ( isdeceqhz ( hzremaindermod p x a )
( hzremaindermod p x b ) ) as [ l | r ].
+ unfold hzmodisringeqrel.
simpl.
split.
× apply ii1.
assumption.
× apply isasethz.
+ unfold hzmodisringeqrel.
simpl.
split.
× apply ii2.
assumption.
× apply isasethz.
Defined.
Definition acommring_hzmod ( p : hz ) ( x : hzneq 0 p ) : acommring.
Proof.
intros.
split with ( hzmodp p x ).
split with ( tpair _ ( deceqtoneqapart ( isdeceqhzmodp p x ) ) ).
split.
- split.
+ intros a b c q.
simpl.
simpl in q.
intro f.
apply q.
rewrite f.
apply idpath.
+ intros a b c q.
simpl in q.
simpl.
intro f.
apply q.
rewrite f.
apply idpath.
- split.
+ intros a b c q.
simpl in q.
simpl.
intros f.
apply q.
rewrite f.
apply idpath.
+ intros a b c q.
simpl.
simpl in q.
intro f.
apply q.
rewrite f.
apply idpath.
Defined.
Lemma hzremaindermodanddiv ( p : hz ) ( x : hzneq 0 p ) ( a : hz )
( y : hzdiv p a ) : hzremaindermod p x a = 0.
Proof.
intros.
assert ( isaprop ( hzremaindermod p x a = 0 ) ) as v
by apply isasethz.
apply ( y ( hProppair _ v ) ).
intro t.
destruct t as [ k f ].
unfold hzdiv0 in f.
assert ( a = p × k + 0 ) as f'.
{ rewrite f.
rewrite hzplusr0.
apply idpath.
}
set ( e := tpair ( P := (fun qr : hz × hz ⇒
a = p × pr1 qr + pr2 qr ×
( hzleh 0 (pr2 qr) ×
hzlth (pr2 qr) (nattohz (hzabsval p)))) )
( dirprodpair k 0 ) (dirprodpair f'
( dirprodpair ( isreflhzleh 0 ) ( lemmas.hzabsvalneq0 p x ) ) ) ).
assert ( e = pr1 ( divalgorithm a p x ) ) as s
by apply ( pr2 ( divalgorithm a p x ) ).
set ( w := pathintotalpr1 ( pathsinv0 s ) ).
unfold e in w.
unfold hzremaindermod.
apply ( maponpaths ( fun z : hz × hz ⇒ pr2 z ) w ).
Defined.
Lemma gcdandprime ( p : hz ) ( x : hzneq 0 p ) ( y : isaprime p )
( a : hz ) ( q : neg ( hzmod p x a 0 ) ) : gcd p a x = 1.
Proof.
intros.
assert ( isaprop ( gcd p a x = 1) ) as is
by apply isasethz.
apply ( pr2 y ( gcd p a x )
( pr1 ( gcdiscommondiv p a x ) ) (hProppair _ is ) ).
intro t.
destruct t as [ t0 | t1 ].
- apply t0.
- apply fromempty.
apply q.
simpl.
assert ( hzremaindermod p x a = 0 ) as f.
{ assert ( hzdiv p a ) as u.
{ rewrite <- t1.
apply ( pr2 ( gcdiscommondiv _ _ _ ) ).
}
rewrite hzremaindermodanddiv.
+ apply idpath.
+ assumption.
}
rewrite f.
rewrite hzqrand0r.
apply idpath.
Defined.
Lemma hzremaindermodandmultl ( p : hz ) ( x : hzneq 0 p ) ( a b : hz ) :
hzremaindermod p x ( p × a + b ) = hzremaindermod p x b.
Proof.
intros.
assert ( p × a + b =
( p × ( a + hzquotientmod p x b ) + hzremaindermod p x b ) ) as f.
{ rewrite hzldistr.
rewrite hzplusassoc.
rewrite <- ( hzdivequationmod p x b ).
apply idpath.
}
rewrite hzremaindermodandplus.
rewrite hzremaindermodandtimes.
rewrite hzqrandselfr.
rewrite hzmult0x.
rewrite hzqrand0r.
rewrite hzplusl0.
rewrite hzremaindermoditerated.
apply idpath.
Defined.
Lemma hzmodprimeinv ( p : hz ) ( x : hzneq 0 p ) ( y : isaprime p )
( a : hz ) ( q : neg ( hzmod p x a 0 ) ) :
∑ v : hz, hzmod p x ( a × v ) 1 × hzmod p x ( v × a ) 1.
Proof.
intros.
split with ( pr2 ( pr1 ( bezoutstrong a p x ) ) ).
assert ( 1 = pr1 (pr1 (bezoutstrong a p x)) × p +
pr2 (pr1 (bezoutstrong a p x)) × a ) as f'.
{ assert ( 1 = gcd p a x ) as f''.
{ apply pathsinv0.
apply gcdandprime; assumption.
}
rewrite f''.
apply ( bezoutstrong a p x ).
}
split.
- rewrite f'.
simpl.
rewrite ( hzmultcomm ( pr1 ( pr1 ( bezoutstrong a p x ) ) ) _ ).
rewrite hzremaindermodandmultl.
rewrite hzmultcomm.
apply idpath.
- rewrite f'.
simpl.
rewrite hzremaindermodandplus.
rewrite ( hzremaindermodandtimes p x _ p ).
rewrite hzqrandselfr.
rewrite hzmultx0.
rewrite hzqrand0r.
rewrite hzplusl0.
rewrite hzremaindermoditerated.
apply idpath.
Defined.
Lemma quotientringsumdecom ( X : commring ) ( R : ringeqrel ( X := X ) ) ( a b : X ) :
@op2 ( commringquot R ) ( setquotpr R a ) ( setquotpr R b ) =
( setquotpr R ( a × b )%ring ).
Proof.
intros.
apply idpath.
Defined.
Definition ahzmod ( p : hz ) ( y : isaprime p ) : afld.
Proof.
intros.
split with ( acommring_hzmod p ( isaprimetoneq0 y ) ).
split.
- simpl.
intro f.
apply ( isirreflhzlth 0 ).
assert ( hzlth 0 1 ) as i by apply hzlthnsn.
change ( 1%ring ) with
( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 1%hz ) in f.
change ( 0%ring ) with
( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 0%hz ).
assert ( hzmodisringeqrel p ( isaprimetoneq0 y ) 1%hz 0%hz ) as o.
{ apply ( setquotprpathsandR
( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 1%hz 0%hz ).
assumption.
}
unfold hzmodisringeqrel in o.
simpl in o.
assert ( hzremaindermod p ( isaprimetoneq0 y ) 0 = 0 ) as o'.
{ rewrite hzqrand0r.
apply idpath.
}
rewrite o' in o.
assert ( hzremaindermod p ( isaprimetoneq0 y ) 1 = 1 ) as o''.
{ assert ( hzlth 1 p ) as v by apply y.
rewrite hzqrand1r.
apply idpath.
}
rewrite o'' in o.
assert ( hzlth 0 1 ) as o''' by apply hzlthnsn.
rewrite o in o'''.
assumption.
- assert ( ∀ x0 : acommring_hzmod p ( isaprimetoneq0 y ),
isaprop ( ( x0 # 0)%ring →
multinvpair ( acommring_hzmod p ( isaprimetoneq0 y ) ) x0 ) ) as int.
{ intro a.
apply impred.
intro q.
apply isapropmultinvpair.
}
apply ( setquotunivprop _ ( fun x0 ⇒ hProppair _ ( int x0 ) ) ).
intro a.
simpl.
intro q.
assert ( neg ( hzmod p ( isaprimetoneq0 y ) a 0 ) ) as q'.
{ intro g.
unfold hzmod in g.
simpl in g.
apply q.
change ( 0%ring ) with
( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 0%hz ).
apply ( iscompsetquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) ).
apply g.
}
split with ( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) )
( pr1 ( hzmodprimeinv p ( isaprimetoneq0 y ) y a q' ) ) ).
split.
+ simpl.
rewrite ( quotientringsumdecom hz ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) ).
change 1%multmonoid with
( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 1%hz ).
apply ( iscompsetquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) ).
simpl.
change (pr2 (pr1 (bezoutstrong a p ( isaprimetoneq0 y ))) × a)%ring with
(pr2 (pr1 (bezoutstrong a p ( isaprimetoneq0 y ))) × a)%hz.
exact ( ( pr2 ( pr2 ( hzmodprimeinv p ( isaprimetoneq0 y ) y a q' ) ) )).
+ simpl.
rewrite ( quotientringsumdecom hz ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) ).
change 1%multmonoid with
( setquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) 1%hz ).
apply ( iscompsetquotpr ( hzmodisringeqrel p ( isaprimetoneq0 y ) ) ).
change (a × pr2 (pr1 (bezoutstrong a p ( isaprimetoneq0 y ))))%ring with
(a × pr2 (pr1 (bezoutstrong a p ( isaprimetoneq0 y ))))%hz.
exact ( ( pr1 ( pr2 ( hzmodprimeinv p ( isaprimetoneq0 y ) y a q' ) ) )).
Defined.
Close Scope hz_scope.
END OF FILE