Library UniMath.MoreFoundations.Subposets
Require Export UniMath.MoreFoundations.Notations.
Definition Subposet (X:Poset) := hsubtype X.
Definition Subposet' (X:Poset) := ∑ (S:Poset) (f:posetmorphism S X), isincl f.
Definition Subposet'_to_Poset {X:Poset} (S:Subposet' X) := pr1 S.
Coercion Subposet'_to_Poset : Subposet' >-> Poset.
Definition Subposet_to_Subposet' {X:Poset} : Subposet X → Subposet' X.
Proof.
intros S. use tpair.
- ∃ (carrier_subset S).
use tpair.
+ intros s t. exact (pr1 s ≤ pr1 t)%poset.
+ simpl. split.
{ split.
{ intros s t u. exact (istrans_posetRelation _ _ _ _). }
{ intros s. exact (isrefl_posetRelation _ _). } }
{ intros s t a b. apply subtypeEquality_prop. exact (isantisymm_posetRelation _ _ _ a b). }
- simpl. use tpair.
+ ∃ (pr1carrier _).
intros s t a. simpl in s,t. exact a.
+ simpl. apply isinclpr1carrier.
Defined.
Definition Subposet'_to_Subposet {X:Poset} : Subposet' X → Subposet X.
Proof.
intros S x. set (f := pr1 (pr2 S)); simpl in f. exact (nonempty (hfiber f x)).
Defined.
Coercion Subposet_to_Subposet' : Subposet >-> Subposet'.
Definition Subposet'_equiv_Subposet (X:Poset) : Subposet' X ≃ Subposet X.
Proof.
∃ Subposet'_to_Subposet.
apply set_bijection_to_weq.
- split.
+ intros S.
∃ (Subposet_to_Subposet' S).
apply funextfun; intro z.
apply hPropUnivalence.
× simple refine (hinhuniv _); intro w.
simpl in w. induction w as [s p]. induction s as [y q]; simpl in p.
induction p. exact q.
× intro h. apply hinhpr. ∃ (z,,h). reflexivity.
+ intros S T p.
admit.
- unfold Subposet.
apply isasethsubtype.
Abort.
Definition Subposet (X:Poset) := hsubtype X.
Definition Subposet' (X:Poset) := ∑ (S:Poset) (f:posetmorphism S X), isincl f.
Definition Subposet'_to_Poset {X:Poset} (S:Subposet' X) := pr1 S.
Coercion Subposet'_to_Poset : Subposet' >-> Poset.
Definition Subposet_to_Subposet' {X:Poset} : Subposet X → Subposet' X.
Proof.
intros S. use tpair.
- ∃ (carrier_subset S).
use tpair.
+ intros s t. exact (pr1 s ≤ pr1 t)%poset.
+ simpl. split.
{ split.
{ intros s t u. exact (istrans_posetRelation _ _ _ _). }
{ intros s. exact (isrefl_posetRelation _ _). } }
{ intros s t a b. apply subtypeEquality_prop. exact (isantisymm_posetRelation _ _ _ a b). }
- simpl. use tpair.
+ ∃ (pr1carrier _).
intros s t a. simpl in s,t. exact a.
+ simpl. apply isinclpr1carrier.
Defined.
Definition Subposet'_to_Subposet {X:Poset} : Subposet' X → Subposet X.
Proof.
intros S x. set (f := pr1 (pr2 S)); simpl in f. exact (nonempty (hfiber f x)).
Defined.
Coercion Subposet_to_Subposet' : Subposet >-> Subposet'.
Definition Subposet'_equiv_Subposet (X:Poset) : Subposet' X ≃ Subposet X.
Proof.
∃ Subposet'_to_Subposet.
apply set_bijection_to_weq.
- split.
+ intros S.
∃ (Subposet_to_Subposet' S).
apply funextfun; intro z.
apply hPropUnivalence.
× simple refine (hinhuniv _); intro w.
simpl in w. induction w as [s p]. induction s as [y q]; simpl in p.
induction p. exact q.
× intro h. apply hinhpr. ∃ (z,,h). reflexivity.
+ intros S T p.
admit.
- unfold Subposet.
apply isasethsubtype.
Abort.