Library UniMath.CategoryTheory.coslicecat
Coslice categories
Contents:
- Definition of slice precategories, x/C
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Local Open Scope cat.
Definition of coslice categories
- obj x/C: pairs (a,f) where f : x --> a
- morphisms (a,f) --> (b,g): morphism h : a --> b with
x | \ | \ f | \ g v \ a --> b h
where h · g = f
Accessor functions
Definition coslicecat_ob := total2 (λ a, C⟦x,a⟧).
Definition coslicecat_mor (f g : coslicecat_ob) := total2 (λ h, pr2 f · h = pr2 g).
Definition coslicecat_ob_object (f : coslicecat_ob) : ob C := pr1 f.
Definition coslicecat_ob_morphism (f : coslicecat_ob) : C⟦x, coslicecat_ob_object f⟧ := pr2 f.
Definition coslicecat_mor_morphism {f g : coslicecat_ob} (h : coslicecat_mor f g) :
C⟦coslicecat_ob_object f, coslicecat_ob_object g⟧ := pr1 h.
Definition coslicecat_mor_comm {f g : coslicecat_ob} (h : coslicecat_mor f g) :
(coslicecat_ob_morphism f) · (coslicecat_mor_morphism h) =
(coslicecat_ob_morphism g) := pr2 h.
Definition coslicecat_mor (f g : coslicecat_ob) := total2 (λ h, pr2 f · h = pr2 g).
Definition coslicecat_ob_object (f : coslicecat_ob) : ob C := pr1 f.
Definition coslicecat_ob_morphism (f : coslicecat_ob) : C⟦x, coslicecat_ob_object f⟧ := pr2 f.
Definition coslicecat_mor_morphism {f g : coslicecat_ob} (h : coslicecat_mor f g) :
C⟦coslicecat_ob_object f, coslicecat_ob_object g⟧ := pr1 h.
Definition coslicecat_mor_comm {f g : coslicecat_ob} (h : coslicecat_mor f g) :
(coslicecat_ob_morphism f) · (coslicecat_mor_morphism h) =
(coslicecat_ob_morphism g) := pr2 h.
Defintions
Definition coslice_precat_ob_mor : precategory_ob_mor :=
(coslicecat_ob,,coslicecat_mor).
Definition id_coslice_precat (c : coslice_precat_ob_mor) : c --> c :=
tpair _ _ (id_right (pr2 c)).
Definition comp_coslice_precat {a b c : coslice_precat_ob_mor}
(f : a --> b) (g : b --> c) : a --> c.
Proof.
use tpair.
- exact (coslicecat_mor_morphism f · coslicecat_mor_morphism g).
- abstract (refine (assoc _ _ _ @ _);
refine (maponpaths (λ f, f · _) (coslicecat_mor_comm f) @ _);
refine (coslicecat_mor_comm g)).
Defined.
Definition coslice_precat_data : precategory_data :=
precategory_data_pair _ id_coslice_precat (@comp_coslice_precat).
Lemma is_precategory_coslice_precat_data (sets : ∏ y, isaset (x --> y)) :
is_precategory coslice_precat_data.
Proof.
use mk_is_precategory; intros; unfold comp_coslice_precat;
cbn; apply subtypePairEquality.
× intro; apply sets.
× apply id_left.
× intro; apply sets.
× apply id_right.
× intro; apply sets.
× apply assoc.
× intro; apply sets.
× apply assoc'.
Defined.
Definition coslice_precat (sets : ∏ y, isaset (x --> y)) : precategory :=
(_,,is_precategory_coslice_precat_data sets).
End coslice_precat_def.
(coslicecat_ob,,coslicecat_mor).
Definition id_coslice_precat (c : coslice_precat_ob_mor) : c --> c :=
tpair _ _ (id_right (pr2 c)).
Definition comp_coslice_precat {a b c : coslice_precat_ob_mor}
(f : a --> b) (g : b --> c) : a --> c.
Proof.
use tpair.
- exact (coslicecat_mor_morphism f · coslicecat_mor_morphism g).
- abstract (refine (assoc _ _ _ @ _);
refine (maponpaths (λ f, f · _) (coslicecat_mor_comm f) @ _);
refine (coslicecat_mor_comm g)).
Defined.
Definition coslice_precat_data : precategory_data :=
precategory_data_pair _ id_coslice_precat (@comp_coslice_precat).
Lemma is_precategory_coslice_precat_data (sets : ∏ y, isaset (x --> y)) :
is_precategory coslice_precat_data.
Proof.
use mk_is_precategory; intros; unfold comp_coslice_precat;
cbn; apply subtypePairEquality.
× intro; apply sets.
× apply id_left.
× intro; apply sets.
× apply id_right.
× intro; apply sets.
× apply assoc.
× intro; apply sets.
× apply assoc'.
Defined.
Definition coslice_precat (sets : ∏ y, isaset (x --> y)) : precategory :=
(_,,is_precategory_coslice_precat_data sets).
End coslice_precat_def.