Library UniMath.CategoryTheory.categories.grs
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids_and_Groups.
Require Import UniMath.CategoryTheory.Categories.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.functor_categories.
Section def_gr_precategory.
Definition gr_fun_space (A B : gr) : hSet := hSetpair (monoidfun A B) (isasetmonoidfun A B).
Definition gr_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) gr (λ A B : gr, gr_fun_space A B).
Definition gr_precategory_data : precategory_data :=
precategory_data_pair
gr_precategory_ob_mor (λ (X : gr), ((idmonoidiso X) : monoidfun X X))
(fun (X Y Z : gr) (f : monoidfun X Y) (g : monoidfun Y Z) ⇒ monoidfuncomp f g).
Local Lemma gr_id_left (X Y : gr) (f : monoidfun X Y) : monoidfuncomp (idmonoidiso X) f = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_left.
Local Lemma gr_id_right (X Y : gr) (f : monoidfun X Y) : monoidfuncomp f (idmonoidiso Y) = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_right.
Local Lemma gr_assoc (X Y Z W : gr) (f : monoidfun X Y) (g : monoidfun Y Z) (h : monoidfun Z W) :
monoidfuncomp f (monoidfuncomp g h) = monoidfuncomp (monoidfuncomp f g) h.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_assoc.
Lemma is_precategory_gr_precategory_data : is_precategory gr_precategory_data.
Proof.
use mk_is_precategory_one_assoc.
- intros a b f. use gr_id_left.
- intros a b f. use gr_id_right.
- intros a b c d f g h. use gr_assoc.
Qed.
Definition gr_precategory : precategory :=
mk_precategory gr_precategory_data is_precategory_gr_precategory_data.
Lemma has_homsets_gr_precategory : has_homsets gr_precategory.
Proof.
intros X Y. use isasetmonoidfun.
Qed.
End def_gr_precategory.
Definition gr_fun_space (A B : gr) : hSet := hSetpair (monoidfun A B) (isasetmonoidfun A B).
Definition gr_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) gr (λ A B : gr, gr_fun_space A B).
Definition gr_precategory_data : precategory_data :=
precategory_data_pair
gr_precategory_ob_mor (λ (X : gr), ((idmonoidiso X) : monoidfun X X))
(fun (X Y Z : gr) (f : monoidfun X Y) (g : monoidfun Y Z) ⇒ monoidfuncomp f g).
Local Lemma gr_id_left (X Y : gr) (f : monoidfun X Y) : monoidfuncomp (idmonoidiso X) f = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_left.
Local Lemma gr_id_right (X Y : gr) (f : monoidfun X Y) : monoidfuncomp f (idmonoidiso Y) = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_right.
Local Lemma gr_assoc (X Y Z W : gr) (f : monoidfun X Y) (g : monoidfun Y Z) (h : monoidfun Z W) :
monoidfuncomp f (monoidfuncomp g h) = monoidfuncomp (monoidfuncomp f g) h.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_assoc.
Lemma is_precategory_gr_precategory_data : is_precategory gr_precategory_data.
Proof.
use mk_is_precategory_one_assoc.
- intros a b f. use gr_id_left.
- intros a b f. use gr_id_right.
- intros a b c d f g h. use gr_assoc.
Qed.
Definition gr_precategory : precategory :=
mk_precategory gr_precategory_data is_precategory_gr_precategory_data.
Lemma has_homsets_gr_precategory : has_homsets gr_precategory.
Proof.
intros X Y. use isasetmonoidfun.
Qed.
End def_gr_precategory.
Lemma gr_iso_is_equiv (A B : ob gr_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1monoidfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropismonoidfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropismonoidfun.
Defined.
Opaque gr_iso_is_equiv.
Lemma gr_iso_equiv (X Y : ob gr_precategory) : iso X Y → monoidiso (X : gr) (Y : gr).
Proof.
intro f.
use monoidisopair.
- exact (weqpair (pr1 (pr1 f)) (gr_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma gr_equiv_is_iso (X Y : ob gr_precategory) (f : monoidiso (X : gr) (Y : gr)) :
@is_iso gr_precategory X Y (monoidfunconstr (pr2 f)).
Proof.
use is_iso_qinv.
- exact (monoidfunconstr (pr2 (invmonoidiso f))).
- use mk_is_inverse_in_precat.
+ use monoidfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use monoidfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque gr_equiv_is_iso.
Lemma gr_equiv_iso (X Y : ob gr_precategory) : monoidiso (X : gr) (Y : gr) → iso X Y.
Proof.
intros f. exact (@isopair gr_precategory X Y (monoidfunconstr (pr2 f))
(gr_equiv_is_iso X Y f)).
Defined.
Lemma gr_iso_equiv_is_equiv (X Y : gr_precategory) : isweq (gr_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (gr_equiv_iso X Y).
- intros x. use eq_iso. use monoidfun_paths. use idpath.
- intros y. use monoidiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Defined.
Opaque gr_iso_equiv_is_equiv.
Definition gr_iso_equiv_weq (X Y : ob gr_precategory) :
weq (iso X Y) (monoidiso (X : gr) (Y : gr)).
Proof.
use weqpair.
- exact (gr_iso_equiv X Y).
- exact (gr_iso_equiv_is_equiv X Y).
Defined.
Lemma gr_equiv_iso_is_equiv (X Y : ob gr_precategory) : isweq (gr_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (gr_iso_equiv X Y).
- intros y. use monoidiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use monoidfun_paths. use idpath.
Defined.
Opaque gr_equiv_iso_is_equiv.
Definition gr_equiv_weq_iso (X Y : ob gr_precategory) :
(monoidiso (X : gr) (Y : gr)) ≃ (iso X Y).
Proof.
use weqpair.
- exact (gr_equiv_iso X Y).
- exact (gr_equiv_iso_is_equiv X Y).
Defined.
Definition gr_precategory_isweq (X Y : ob gr_precategory) : isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (gr_univalence X Y) (gr_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (gr_univalence X Y) (gr_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque gr_precategory_isweq.
Definition gr_precategory_is_univalent : is_univalent gr_precategory.
Proof.
use mk_is_univalent.
- intros X Y. exact (gr_precategory_isweq X Y).
- exact has_homsets_gr_precategory.
Defined.
Definition gr_category : univalent_category := mk_category gr_precategory gr_precategory_is_univalent.
End def_gr_category.