Library UniMath.CategoryTheory.categories.commrings
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids_and_Groups.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Categories.
Local Open Scope cat.
Section def_commring_precategory.
Definition commring_fun_space (A B : commring) : hSet := hSetpair (ringfun A B) (isasetrigfun A B).
Definition commring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) commring (λ A B : commring, commring_fun_space A B).
Definition commring_precategory_data : precategory_data :=
precategory_data_pair
commring_precategory_ob_mor (λ (X : commring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : commring) (f : ringfun X Y) (g : ringfun Y Z) ⇒ rigfuncomp f g).
Local Lemma commring_id_left (X Y : commring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_id_left.
Local Lemma commring_id_right (X Y : commring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_id_right.
Local Lemma commring_assoc (X Y Z W : commring) (f : ringfun X Y) (g : ringfun Y Z)
(h : ringfun Z W) : rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_assoc.
Lemma is_precategory_commring_precategory_data : is_precategory commring_precategory_data.
Proof.
use mk_is_precategory_one_assoc.
- intros a b f. use commring_id_left.
- intros a b f. use commring_id_right.
- intros a b c d f g h. use commring_assoc.
Qed.
Definition commring_precategory : precategory :=
mk_precategory commring_precategory_data is_precategory_commring_precategory_data.
Lemma has_homsets_commring_precategory : has_homsets commring_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_commring_precategory.
Definition commring_fun_space (A B : commring) : hSet := hSetpair (ringfun A B) (isasetrigfun A B).
Definition commring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) commring (λ A B : commring, commring_fun_space A B).
Definition commring_precategory_data : precategory_data :=
precategory_data_pair
commring_precategory_ob_mor (λ (X : commring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : commring) (f : ringfun X Y) (g : ringfun Y Z) ⇒ rigfuncomp f g).
Local Lemma commring_id_left (X Y : commring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_id_left.
Local Lemma commring_id_right (X Y : commring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_id_right.
Local Lemma commring_assoc (X Y Z W : commring) (f : ringfun X Y) (g : ringfun Y Z)
(h : ringfun Z W) : rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque commring_assoc.
Lemma is_precategory_commring_precategory_data : is_precategory commring_precategory_data.
Proof.
use mk_is_precategory_one_assoc.
- intros a b f. use commring_id_left.
- intros a b f. use commring_id_right.
- intros a b c d f g h. use commring_assoc.
Qed.
Definition commring_precategory : precategory :=
mk_precategory commring_precategory_data is_precategory_commring_precategory_data.
Lemma has_homsets_commring_precategory : has_homsets commring_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_commring_precategory.
Lemma commring_iso_is_equiv (A B : ob commring_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Defined.
Opaque commring_iso_is_equiv.
Lemma commring_iso_equiv (X Y : ob commring_precategory) :
iso X Y → ringiso (X : commring) (Y : commring).
Proof.
intro f.
use ringisopair.
- exact (weqpair (pr1 (pr1 f)) (commring_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma commring_equiv_is_iso (X Y : ob commring_precategory)
(f : ringiso (X : commring) (Y : commring)) :
@is_iso commring_precategory X Y (ringfunconstr (pr2 f)).
Proof.
use is_iso_qinv.
- exact (ringfunconstr (pr2 (invrigiso f))).
- use mk_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque commring_equiv_is_iso.
Lemma commring_equiv_iso (X Y : ob commring_precategory) :
ringiso (X : commring) (Y : commring) → iso X Y.
Proof.
intros f. exact (@isopair commring_precategory X Y (ringfunconstr (pr2 f))
(commring_equiv_is_iso X Y f)).
Defined.
Lemma commring_iso_equiv_is_equiv (X Y : commring_precategory) : isweq (commring_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (commring_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
Defined.
Opaque commring_iso_equiv_is_equiv.
Definition commring_iso_equiv_weq (X Y : ob commring_precategory) :
weq (iso X Y) (ringiso (X : commring) (Y : commring)).
Proof.
use weqpair.
- exact (commring_iso_equiv X Y).
- exact (commring_iso_equiv_is_equiv X Y).
Defined.
Lemma commring_equiv_iso_is_equiv (X Y : ob commring_precategory) : isweq (commring_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (commring_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypeEquality.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Defined.
Opaque commring_equiv_iso_is_equiv.
Definition commring_equiv_weq_iso (X Y : ob commring_precategory) :
(ringiso (X : commring) (Y : commring)) ≃ (iso X Y).
Proof.
use weqpair.
- exact (commring_equiv_iso X Y).
- exact (commring_equiv_iso_is_equiv X Y).
Defined.
Definition commring_precategory_isweq (X Y : ob commring_precategory) :
isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (commring_univalence X Y) (commring_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (commring_univalence X Y) (commring_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque commring_precategory_isweq.
Definition commring_precategory_is_univalent : is_univalent commring_precategory.
Proof.
use mk_is_univalent.
- intros X Y. exact (commring_precategory_isweq X Y).
- exact has_homsets_commring_precategory.
Defined.
Definition commring_category : univalent_category :=
mk_category commring_precategory commring_precategory_is_univalent.
End def_commring_category.