Library UniMath.CategoryTheory.CommaCategories
**********************************************************
Benedikt Ahrens March 2016, Anthony Bordg May 2017
**********************************************************
Contents :
- special comma categories (c ↓ K), called cComma (constant Comma)
- forgetful functor cComma_pr1
- morphism f : C ⟦c, c'⟧ induces functor_cComma_mor : functor (c' ↓ K) (c ↓ K)
- general comma precategories comma_precategory
- projection functors (comma_pr1, comma_pr2)
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Local Open Scope cat.
Section const_comma_category_definition.
Context {M C : precategory}.
Variable hsC : has_homsets C.
Variable hsM : has_homsets M.
Variable K : functor M C.
Variable c : C.
Definition ccomma_object : UU := ∑ m, C⟦c, K m⟧.
Definition ccomma_morphism (a b : ccomma_object) : UU
:= ∑ f : _ ⟦pr1 a, pr1 b⟧, pr2 a · #K f = pr2 b.
Definition isaset_ccomma_morphism a b : isaset (ccomma_morphism a b).
Proof.
apply (isofhleveltotal2 2).
- apply hsM.
- intro.
apply hlevelntosn.
apply hsC.
Qed.
Definition cComma_mor_eq a b (f f' : ccomma_morphism a b)
: pr1 f = pr1 f' → f = f'.
Proof.
intro H.
apply subtypeEquality.
intro. apply hsC.
exact H.
Qed.
Definition ccomma_id a : ccomma_morphism a a.
Proof.
∃ (identity _ ).
abstract (
intermediate_path (pr2 a · identity _ );
[ apply maponpaths; apply functor_id |];
apply id_right
).
Defined.
Definition ccomma_comp a b d :
ccomma_morphism a b → ccomma_morphism b d → ccomma_morphism a d.
Proof.
intros f g.
∃ (pr1 f · pr1 g).
abstract (
rewrite functor_comp;
rewrite assoc;
rewrite (pr2 f);
apply (pr2 g)
).
Defined.
Definition ccomma_precategory_ob_mor : precategory_ob_mor.
Proof.
∃ ccomma_object.
exact ccomma_morphism.
Defined.
Definition ccomma_precategory_data : precategory_data.
Proof.
∃ ccomma_precategory_ob_mor.
split.
- exact ccomma_id.
- exact ccomma_comp.
Defined.
Definition is_precategory_ccomma_precategory_data
: is_precategory ccomma_precategory_data.
Proof.
repeat split.
- intros. apply cComma_mor_eq.
simpl. apply id_left.
- intros. apply cComma_mor_eq.
simpl. apply id_right.
- intros. apply cComma_mor_eq.
simpl. apply assoc.
- intros. apply cComma_mor_eq.
simpl. apply assoc'.
Defined.
Definition cComma : precategory.
Proof.
∃ ccomma_precategory_data.
exact is_precategory_ccomma_precategory_data.
Defined.
Definition ccomma_pr1_functor_data : functor_data cComma M.
Proof.
∃ pr1.
intros a b f. exact (pr1 f).
Defined.
Lemma is_functor_ccomma_pr1 : is_functor ccomma_pr1_functor_data.
Proof.
split.
- intro a. apply idpath.
- intros ? ? ? ? ?. apply idpath.
Qed.
Definition cComma_pr1 : functor _ _ := tpair _ _ is_functor_ccomma_pr1.
End const_comma_category_definition.
Section lemmas_on_const_comma_cats.
Context {M C : precategory}.
Variable hsC : has_homsets C.
Variable hsM : has_homsets M.
Local Notation "c ↓ K" := (cComma hsC K c) (at level 3).
Variable K : functor M C.
Context {c c' : C}.
Variable h : _ ⟦c, c'⟧.
Definition cComma_mor_ob : c' ↓ K → c ↓ K.
Proof.
intro af.
∃ (pr1 af).
exact (h · pr2 af).
Defined.
Definition cComma_mor_mor (af af' : c' ↓ K) (g : _ ⟦af, af'⟧)
: _ ⟦cComma_mor_ob af, cComma_mor_ob af'⟧.
Proof.
∃ (pr1 g).
abstract (
simpl;
rewrite <- assoc;
rewrite (pr2 g);
apply idpath
).
Defined.
Definition cComma_mor_functor_data : functor_data (c' ↓ K) (c ↓ K).
Proof.
∃ cComma_mor_ob.
exact cComma_mor_mor.
Defined.
Lemma is_functor_cComma_mor_functor_data : is_functor cComma_mor_functor_data.
Proof.
split.
- intro. apply cComma_mor_eq. { apply hsC. }
apply idpath.
- intros ? ? ? ? ?. apply cComma_mor_eq. { apply hsC. }
apply idpath.
Qed.
Definition functor_cComma_mor : functor _ _ := tpair _ _ is_functor_cComma_mor_functor_data.
End lemmas_on_const_comma_cats.
Section general_comma_precategories.
Local Open Scope cat.
Context {C : category}.
Context {D E : precategory}.
Variable S : D ⟶ C.
Variable T : E ⟶ C.
Local Open Scope type_scope.
Local Open Scope cat.
Definition comma_cat_ob : UU := ∑ ed : ob E × ob D, C⟦T (pr1 ed), S (pr2 ed)⟧.
Definition comma_cat_mor : comma_cat_ob → comma_cat_ob → UU :=
λ abf : comma_cat_ob,
(λ cdg : comma_cat_ob,
∑ kh : E⟦pr1 (pr1 abf), pr1 (pr1 cdg)⟧ × D⟦pr2 (pr1 abf), pr2 (pr1 cdg)⟧, pr2 (abf) · #S(pr2 kh) = #T(pr1 kh) · pr2 (cdg)).
Definition comma_cat_ob_mor : precategory_ob_mor := precategory_ob_mor_pair comma_cat_ob comma_cat_mor.
Definition comma_cat_id : ∏ edf : comma_cat_ob_mor, comma_cat_ob_mor ⟦ edf, edf ⟧.
Proof.
intro edf. cbn.
∃ (dirprodpair (identity (pr1 (pr1 edf))) (identity (pr2 (pr1 edf)))). cbn.
abstract (
rewrite 2 functor_id;
rewrite id_right;
rewrite id_left;
apply idpath
).
Defined.
Definition comma_cat_comp : ∏ uvf xyg zwh : comma_cat_ob, comma_cat_mor uvf xyg → comma_cat_mor xyg zwh → comma_cat_mor uvf zwh.
Proof.
intros uvf xyg zwh ijp klq.
∃ (dirprodpair (pr1 (pr1 ijp) · pr1 (pr1 klq)) (pr2 (pr1 ijp) · pr2 (pr1 klq))). cbn.
abstract (
rewrite 2 functor_comp;
rewrite assoc;
rewrite (pr2 ijp);
rewrite <- assoc;
rewrite (pr2 klq);
rewrite assoc;
apply idpath
).
Defined.
Definition comma_cat_id_comp : precategory_id_comp comma_cat_ob_mor := dirprodpair comma_cat_id comma_cat_comp.
Definition comma_cat_data : precategory_data := tpair _ comma_cat_ob_mor comma_cat_id_comp.
Definition comma_cat_data_id_left : ∏ (abf cdg : comma_cat_data) (hkp : abf --> cdg), identity abf · hkp = hkp .
Proof.
intros abf cdg hkp.
use total2_paths2_f.
- use total2_paths2.
+ cbn. apply id_left.
+ cbn. apply id_left.
- cbn. apply (homset_property C).
Qed.
Definition comma_cat_data_id_right : ∏ (abf cdg : comma_cat_data) (hkp : abf --> cdg), hkp · identity cdg = hkp .
Proof.
intros abf cdg hkp.
use total2_paths2_f.
- use total2_paths2.
+ cbn. apply id_right.
+ cbn. apply id_right.
- cbn. apply (homset_property C).
Qed.
Definition comma_cat_data_assoc :
∏ (stf uvg xyh zwi : comma_cat_data) (jkp : stf --> uvg) (lmq : uvg --> xyh) (nor : xyh --> zwi), jkp · (lmq · nor) = (jkp · lmq) · nor .
Proof.
intros stf uvg xyh zwi jkp lmq nor.
use total2_paths2_f.
- use total2_paths2.
+ cbn. apply assoc.
+ cbn. apply assoc.
- apply (homset_property C).
Qed.
Definition comma_cat_data_assoc' :
∏ (stf uvg xyh zwi : comma_cat_data) (jkp : stf --> uvg) (lmq : uvg --> xyh) (nor : xyh --> zwi), (jkp · lmq) · nor = jkp · (lmq · nor).
Proof.
intros stf uvg xyh zwi jkp lmq nor.
use total2_paths2_f.
- use total2_paths2.
+ cbn. apply assoc'.
+ cbn. apply assoc'.
- apply (homset_property C).
Qed.
Definition is_precategory_comma_cat_data : is_precategory comma_cat_data :=
mk_is_precategory comma_cat_data_id_left comma_cat_data_id_right comma_cat_data_assoc comma_cat_data_assoc'.
Definition comma_precategory : precategory := mk_precategory comma_cat_data is_precategory_comma_cat_data.
When all the precategories involved have homsets, so does the comma category.
Lemma has_homsets_comma_precat {hsE : has_homsets E} {hsD : has_homsets D} :
has_homsets comma_precategory.
Proof.
unfold has_homsets, comma_precategory.
cbn; unfold comma_cat_ob, comma_cat_mor; cbn.
intros ? ?.
apply isaset_total2.
- apply isaset_dirprod.
+ apply hsE.
+ apply hsD.
- intro.
apply hlevelntosn.
apply homset_property.
Qed.
has_homsets comma_precategory.
Proof.
unfold has_homsets, comma_precategory.
cbn; unfold comma_cat_ob, comma_cat_mor; cbn.
intros ? ?.
apply isaset_total2.
- apply isaset_dirprod.
+ apply hsE.
+ apply hsD.
- intro.
apply hlevelntosn.
apply homset_property.
Qed.
Definition comma_domain : functor comma_precategory E.
Proof.
use mk_functor.
- use mk_functor_data.
+ intros uvf; exact (dirprod_pr1 (pr1 uvf)).
+ intros ? ? mor; exact (dirprod_pr1 (pr1 mor)).
- use dirprodpair.
+ intro; reflexivity.
+ intros ? ? ? ? ?; reflexivity.
Defined.
Definition comma_codomain : functor comma_precategory D.
Proof.
use mk_functor.
- use mk_functor_data.
+ intros uvf; exact (dirprod_pr2 (pr1 uvf)).
+ intros ? ? mor; exact (dirprod_pr2 (pr1 mor)).
- use dirprodpair.
+ intro; reflexivity.
+ intros ? ? ? ? ?; reflexivity.
Defined.
End general_comma_precategories.
Lemma comma_category {C D E : category} (S : functor D C) (T : functor E C) :
category.
Proof.
use category_pair.
- exact (comma_precategory S T).
- apply has_homsets_comma_precat; apply homset_property.
Defined.