Library UniMath.CategoryTheory.Bicategories.WkCatEnrichment.Cat
**********************************************************
Mitchell Riley
June 2016
I am very grateful to Peter LeFanu Lumsdaine, whose unreleased
bicategories code strongly influenced the proofs in this file.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.categories.StandardCategories. Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Definition Catlike_associator ( a b c d : precategory )
(hsB : has_homsets b) (hsC : has_homsets c) (hsD : has_homsets d) :
nat_trans
(functor_composite
(pair_functor
(functor_identity (functor_precategory a b hsB))
(functorial_composition b c d hsC hsD))
(functorial_composition a b d hsB hsD))
(functor_composite
(precategory_binproduct_assoc (functor_precategory a b hsB)
(functor_precategory b c hsC)
(functor_precategory c d hsD))
(functor_composite
(pair_functor
(functorial_composition a b c hsB hsC)
(functor_identity (functor_precategory c d hsD)))
(functorial_composition a c d hsC hsD))).
Proof.
use tpair.
-
intros x.
simpl.
∃ (λ x, identity _).
intros oba oba' f.
use (id_right _ @ !(id_left _)).
-
intros [F [G H]].
intros [F' [G' H']].
intros [f [g h]].
apply nat_trans_eq. exact hsD.
intros oba.
simpl.
rewrite id_right.
rewrite id_left.
rewrite functor_comp.
rewrite assoc.
reflexivity.
Defined.
Definition Catlike_associator_is_iso ( a b c d : precategory )
(hsB : has_homsets b) (hsC : has_homsets c) (hsD : has_homsets d) :
∏ f g h, is_iso (Catlike_associator a b c d hsB hsC hsD
(precatbinprodpair f (precatbinprodpair g h))).
Proof.
intros f g h.
apply functor_iso_if_pointwise_iso.
intros oba.
apply (identity_is_iso d).
Defined.
Definition Catlike_left_unitor (a b : precategory) (hsA : has_homsets a) (hsB : has_homsets b) :
nat_trans
(functor_composite
(bindelta_pair_functor
(functor_composite (functor_to_unit (functor_precategory a b hsB))
(constant_functor unit_category (functor_precategory a a hsA) (functor_identity a)))
(functor_identity (functor_precategory a b hsB)))
(functorial_composition a a b hsA hsB))
(functor_identity (functor_precategory a b hsB)).
Proof.
use tpair.
-
intros x.
∃ (λ x, identity _).
intros oba oba' f.
exact (id_right _ @ !(id_left _)).
-
intros F F' f.
apply nat_trans_eq. exact hsB.
intros oba.
simpl.
rewrite id_right.
rewrite id_left.
rewrite functor_id.
rewrite id_right.
reflexivity.
Defined.
Definition Catlike_left_unitor_is_iso (a b : precategory)
(hsA : has_homsets a) (hsB : has_homsets b) :
∏ f, is_iso (Catlike_left_unitor a b hsA hsB f).
Proof.
intros f.
apply functor_iso_if_pointwise_iso.
intros oba.
apply (identity_is_iso b).
Defined.
Definition Catlike_right_unitor (a b : precategory) (hsB : has_homsets b) :
nat_trans
(functor_composite
(bindelta_pair_functor (functor_identity (functor_precategory a b hsB))
(functor_composite (functor_to_unit (functor_precategory a b hsB))
(constant_functor unit_category (functor_precategory b b hsB) (functor_identity b))))
(functorial_composition a b b hsB hsB))
(functor_identity (functor_precategory a b hsB)).
Proof.
use tpair. - intros x.
∃ (λ x, identity _).
intros oba oba' f.
exact (id_right _ @ !(id_left _)).
- intros F F' f.
apply nat_trans_eq. exact hsB.
intros oba.
simpl.
rewrite (id_right _).
rewrite (id_left _).
reflexivity.
Defined.
Definition Catlike_right_unitor_is_iso (a b : precategory) (hsB : has_homsets b) :
∏ f, is_iso (Catlike_right_unitor a b hsB f).
Proof.
intros f.
apply functor_iso_if_pointwise_iso.
intros oba.
apply (identity_is_iso b).
Defined.
Definition Catlike_pentagon ( a b c d e : precategory )
(hsB : has_homsets b) (hsC : has_homsets c) (hsD : has_homsets d)
(hsE : has_homsets e) :
∏ k h g f,
(Catlike_associator a b c e _ _ _)
(precatbinprodpair k
(precatbinprodpair h ((functorial_composition c d e hsD _) (dirprodpair g f)))) ·
(Catlike_associator a c d e _ _ _)
(precatbinprodpair ((functorial_composition a b c hsB hsC) (dirprodpair k h))
(precatbinprodpair g f))
= (functor_on_morphisms (functorial_composition a b e hsB hsE)
(precatbinprodmor (identity k)
((Catlike_associator b c d e _ _ _) (precatbinprodpair h (precatbinprodpair g f)))) ·
(Catlike_associator a b d e _ _ _)
(precatbinprodpair k
(precatbinprodpair ((functorial_composition b c d _ _) (dirprodpair h g)) f))) ·
functor_on_morphisms (functorial_composition a d e _ _)
(precatbinprodmor
((Catlike_associator a b c d _ _ _) (precatbinprodpair k (precatbinprodpair h g)))
(identity f)).
Proof.
intros k h g f.
apply nat_trans_eq. exact hsE.
intros oba.
simpl.
repeat rewrite functor_id.
repeat rewrite (id_left _).
reflexivity.
Defined.
Definition Catlike_triangle ( a b c : precategory )
(hsB : has_homsets b) (hsC : has_homsets c) :
∏ f g, functor_on_morphisms (functorial_composition a b c _ _)
(precatbinprodmor (identity f) (Catlike_left_unitor b c _ hsC g))
=
(Catlike_associator a b b c hsB _ _
(precatbinprodpair f (precatbinprodpair (functor_identity_as_ob b hsB) g)))
· functor_on_morphisms (functorial_composition a b c _ _)
(precatbinprodmor (Catlike_right_unitor a b _ f) (identity g)).
Proof.
intros f g.
apply nat_trans_eq. exact hsC.
intros oba.
simpl.
repeat rewrite functor_id.
repeat rewrite (id_left _).
reflexivity.
Defined.
Definition PreCat_1mor_2mor : prebicategory_ob_hom.
Proof.
∃ category.
intros a b.
exact (functor_precategory a b (homset_property b)).
Defined.
Definition PreCat_id_comp : prebicategory_id_comp.
Proof.
∃ PreCat_1mor_2mor.
split.
- simpl.
exact functor_identity.
- simpl.
intros a b c.
exact (functorial_composition a b c (homset_property b)
(homset_property c)).
Defined.
Definition PreCat_data : prebicategory_data.
Proof.
unfold prebicategory_data.
∃ PreCat_id_comp.
repeat split.
- intros.
simpl in a,b,c,d.
exact (Catlike_associator a b c d (homset_property b)
(homset_property c)
(homset_property d)).
- intros.
simpl in a, b.
exact (Catlike_left_unitor a b (homset_property a)
(homset_property b)).
- intros.
simpl in a, b.
exact (Catlike_right_unitor a b (homset_property b)).
Defined.
Definition PreCat_has_2mor_set : has_2mor_sets PreCat_data.
Proof.
unfold has_2mor_sets.
intros a b f g.
apply isaset_nat_trans.
exact (homset_property b).
Defined.
Definition PreCat_associator_and_unitors_are_iso : associator_and_unitors_are_iso PreCat_data.
Proof.
repeat split.
- intros a b c d.
apply Catlike_associator_is_iso.
- intros a b.
apply Catlike_left_unitor_is_iso.
- intros a b.
apply Catlike_right_unitor_is_iso.
Defined.
Definition PreCat_coherence : prebicategory_coherence PreCat_data.
Proof.
unfold prebicategory_coherence.
split.
- intros a b c d e.
apply Catlike_pentagon.
- intros a b c.
apply Catlike_triangle.
Defined.
Definition PreCat : prebicategory.
Proof.
use tpair.
exact PreCat_data.
split.
exact PreCat_has_2mor_set.
split.
exact PreCat_associator_and_unitors_are_iso.
exact PreCat_coherence.
Defined.
Definition Cat_1mor_2mor : prebicategory_ob_hom.
Proof.
∃ univalent_category.
intros a b.
exact (functor_precategory a b (univalent_category_has_homsets b)).
Defined.
Definition Cat_id_comp : prebicategory_id_comp.
Proof.
∃ Cat_1mor_2mor.
split.
- simpl.
exact functor_identity.
- simpl.
intros a b c.
exact (functorial_composition a b c (univalent_category_has_homsets b)
(univalent_category_has_homsets c)).
Defined.
Definition Cat_data : prebicategory_data.
Proof.
unfold prebicategory_data.
∃ Cat_id_comp.
repeat split.
- intros.
simpl in a,b,c,d.
exact (Catlike_associator a b c d (univalent_category_has_homsets b)
(univalent_category_has_homsets c)
(univalent_category_has_homsets d)).
- intros.
simpl in a, b.
exact (Catlike_left_unitor a b (univalent_category_has_homsets a)
(univalent_category_has_homsets b)).
- intros.
simpl in a, b.
exact (Catlike_right_unitor a b (univalent_category_has_homsets b)).
Defined.
Definition Cat_has_2mor_set : has_2mor_sets Cat_data.
Proof.
unfold has_2mor_sets.
intros a b f g.
apply isaset_nat_trans.
exact (univalent_category_has_homsets b).
Defined.
Definition Cat_associator_and_unitors_are_iso : associator_and_unitors_are_iso Cat_data.
Proof.
repeat split.
- intros a b c d.
apply Catlike_associator_is_iso.
- intros a b.
apply Catlike_left_unitor_is_iso.
- intros a b.
apply Catlike_right_unitor_is_iso.
Defined.
Definition Cat_coherence : prebicategory_coherence Cat_data.
Proof.
split.
- intros a b c d e.
apply Catlike_pentagon.
- intros a b c.
apply Catlike_triangle.
Defined.
Definition Cat_prebicategory : prebicategory.
Proof.
use tpair.
exact Cat_data.
unfold is_prebicategory.
split.
exact Cat_has_2mor_set.
split.
exact Cat_associator_and_unitors_are_iso.
exact Cat_coherence.
Defined.
Definition Cat_has_homcats : has_homcats Cat_prebicategory.
Proof.
unfold has_homcats.
intros a b.
apply is_univalent_functor_category.
Defined.