Library UniMath.CategoryTheory.Bicategories.Discreteness
Discreteness for Bicategories.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.Bicategories.Bicategories.Bicat. Import Bicat.Notations.
Require Import UniMath.CategoryTheory.Bicategories.Bicategories.Unitors.
Require Import UniMath.CategoryTheory.Bicategories.Bicategories.BicategoryLaws.
Require Import UniMath.CategoryTheory.Bicategories.Bicategories.Adjunctions.
Local Open Scope cat.
Miscellanea.
Lemma is_z_isomorphism_weq_is_iso {C:category} {a b} (f : C⟦a,b⟧)
: is_z_isomorphism f ≃ is_iso f.
Proof.
apply weqimplimpl.
- apply is_iso_from_is_z_iso.
- apply is_z_iso_from_is_iso.
- apply isaprop_is_z_isomorphism, C.
- apply isaprop_is_iso.
Defined.
Discrete space of 2-cells.
Definition idto2cell {C : prebicat_data} {a b} {f g : C⟦a,b⟧}
: (f = g) → f ==> g
:= paths_rect (C ⟦ a, b ⟧)
f
(λ (g0 : C ⟦ a, b ⟧) (_ : f = g0), f ==> g0)
(id₂ f)
g.
Definition has_trivial_2cells (C : prebicat_data)
: UU
:= ∏ a b (f g : C⟦a,b⟧), isweq (λ p : f = g, idto2cell p).
Definition has_trivial_2cells_equality {C : prebicat_data}
(disc : has_trivial_2cells C)
{a b} {f g : C⟦a,b⟧}
: (f ==> g) → (f = g)
:= invmap (weqpair (λ p : f = g, idto2cell p) (disc a b f g)).
Definition is_discrete_bicategory (C : prebicat_data)
: UU
:= (∏ a b (f g : C⟦a,b⟧), isaprop (f ==> g))
× has_trivial_2cells C.
Definition is_discrete_bicategory_cellprop {C : prebicat_data}
(disc : is_discrete_bicategory C)
: (∏ a b (f g : C⟦a,b⟧), isaprop (f ==> g))
:= pr1 disc.
Coercion is_discrete_bicategory_trivial_2cells {C : prebicat_data}
(disc : is_discrete_bicategory C)
: has_trivial_2cells C
:= pr2 disc.
Discreteness of the discrete bicategory associated to a category.
Lemma has_trivial_2cells_discrete_prebicat (C : category)
: has_trivial_2cells (discrete_prebicat C).
Proof.
intros a b f g.
use weqhomot.
- exact (idweq (f = g)).
- intro e. induction e. apply idpath.
Qed.
Lemma is_discrete_discrete_bicategory (C : category)
: is_discrete_bicategory (discrete_prebicat C).
Proof.
split.
- intros. cbn in a, b, f, g. apply homset_property.
- apply has_trivial_2cells_discrete_prebicat.
Qed.
1-category associated to a discrete bicategory.
Definition precategory_of_discrete_bicategory {C : prebicat_data}
(disc : is_discrete_bicategory C)
: precategory.
Proof.
use tpair.
- exact C.
- repeat split; intros; apply disc.
+ apply lunitor.
+ apply runitor.
+ apply lassociator.
+ apply rassociator.
Defined.
Lemma is_discrete_bicategory_has_homsets {C : prebicat_data}
(disc : is_discrete_bicategory C)
: has_homsets C.
Proof.
intros a b f g.
refine (isofhlevelweqb 1 _ _).
- apply (weqpair idto2cell), disc.
- apply (is_discrete_bicategory_cellprop disc).
Qed.
Definition category_of_discrete_bicategory {C : prebicat_data}
(disc : is_discrete_bicategory C)
: category.
Proof.
use tpair.
- exact (precategory_of_discrete_bicategory disc).
- exact (is_discrete_bicategory_has_homsets disc).
Defined.
Lemma is_discrete_bicategory_iscontr_is_invertible_2cell {C : bicat}
(disc : is_discrete_bicategory C)
{a b : C} {f g : C ⟦ a, b ⟧}
(x : f ==> g)
: iscontr (is_invertible_2cell x).
Proof.
induction (has_trivial_2cells_equality disc x).
apply unique_exists with x.
- split; apply (is_discrete_bicategory_cellprop disc).
- intro. apply isapropdirprod; apply C.
- intros. apply (is_discrete_bicategory_cellprop disc).
Qed.
Lemma is_adjointequivalence_discrete_weq_iso {C : bicat}
(disc : is_discrete_bicategory C)
{a b} (f : C⟦a,b⟧)
: left_adjoint_equivalence f
≃
is_iso (C := category_of_discrete_bicategory disc) f.
Proof.
eapply weqcomp.
2: apply is_z_isomorphism_weq_is_iso.
unfold left_adjoint_equivalence, is_z_isomorphism.
eapply weqcomp.
{ apply weqfibtototal. intro. apply weqdirprodcomm. }
eapply weqcomp.
{ apply (weqtotal2asstol _
(λ x : (∑ y : left_adjoint_data f, left_equivalence_axioms y),
left_adjoint_axioms (pr1 x))). }
eapply weqcomp.
{ apply weqpr1. induction z as [la le].
apply (isofhleveldirprod 0); cbn; apply (is_discrete_bicategory_cellprop disc). }
eapply weqcomp.
{ apply weqtotal2asstor. }
apply weqfibtototal. intro g.
unfold is_inverse_in_precat.
eapply weqcomp.
{ apply weqpr1.
induction z as [η ε].
apply (isofhleveldirprod 0); cbn;
apply (is_discrete_bicategory_iscontr_is_invertible_2cell disc). }
apply weqdirprod.
{ eapply weqcomp. 2: apply weqpathsinv0.
apply invweq.
apply (weqpair _ (is_discrete_bicategory_trivial_2cells disc _ _ _ _)). }
apply invweq.
apply (weqpair _ (is_discrete_bicategory_trivial_2cells disc _ _ _ _)).
Defined.