Library UniMath.CategoryTheory.Enriched.Enriched

Enriched categories

Contents

  • Definition
  • Enriched functors
    • Composition of enriched functors

Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalCategories.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.Core.Isos.

Local Open Scope cat.

Section aux.

Lemma bifunctor_on_morphisms_comm {A B C : category} (F : A B C) {a a' : A} {b b' : B} (f : a --> a') (g : b --> b') : #F (f #, id _) · #F (id _ #, g) = #F (id _ #, g) · #F (f #, id _).
Proof.
  rewrite <- !functor_comp.
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite !id_left, !id_right.
  reflexivity.
Qed.

Lemma bifunctor_comp_left {A B C : category} (F : A B C) {a a' a'' : A} {b : B} (f : a --> a') (g : a' --> a'') : #F (f · g #, id b) = #F (f #, id _) · #F (g #, id _).
Proof.
  rewrite <- (functor_comp F).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left.
  reflexivity.
Qed.

Lemma bifunctor_comp_right {A B C : category} (F : A B C) {a : A} {b b' b'' : B} (f : b --> b') (g : b' --> b'') : #F (id a #, f · g) = #F (id _ #, f) · #F (id _ #, g).
Proof.
  rewrite <- (functor_comp F).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left.
  reflexivity.
Qed.

End aux.

Section A.

For the whole file, fix a monoidal category.
Context {Mon_V : monoidal_cat}.

Let I := monoidal_cat_unit Mon_V.
Let tensor := monoidal_cat_tensor Mon_V.
Let α := monoidal_cat_associator Mon_V.
Let l_unitor := monoidal_cat_left_unitor Mon_V.
Let r_unitor := monoidal_cat_right_unitor Mon_V.

Declare Scope enriched.
Notation "X ⊗ Y" := (tensor (X , Y)) : enriched.
Notation "f #⊗ g" := (#tensor (f #, g)) (at level 31) : enriched.
Local Open Scope enriched.

Definition

This definition is based on that on the nLab
Section Def.

  Definition enriched_precat_data : UU :=
     C : UU,
     mor : C C ob Mon_V,
    dirprod
      ( x : C, I --> mor x x)
      ( x y z : C, mor y z mor x y --> mor x z).
Accessors
Constructor. Use like so: use make_enriched_cat_data
  Definition make_enriched_precat_data (C : UU) (mor : x y : C, ob Mon_V)
             (ids : x : C, I --> mor x x)
             (assoc : x y z : C, mor y z mor x y --> mor x z) :
    enriched_precat_data.
  Proof.
    unfold enriched_precat_data.
    use tpair; [|use tpair; [|use make_dirprod]].
    - exact C.
    - exact mor.
    - exact ids.
    - exact assoc.
  Defined.

  Section Axioms.
    Context (e : enriched_precat_data).

Associativity axiom for enriched categories:
(C(c, d) ⊗ C(b, c)) ⊗ C(a, b) --------> C(c, d) ⊗ (C(b, c) ⊗ C(a, b)) | | ∘ ⊗ id | id ⊗ ∘ | V V C(b, d) ⊗ C(a, b) -----> C(a, d) <------ C(c, d) ⊗ C(a, c)

    Definition enriched_assoc_ax : UU :=
       a b c d : enriched_cat_ob e,
      (enriched_cat_comp b c d #⊗ (identity _))
        · enriched_cat_comp a _ _ =
      pr1 α ((_, _) , _)
        · ((identity _ #⊗ enriched_cat_comp _ _ _)
          · enriched_cat_comp _ _ _).

    Lemma isaprop_enriched_assoc_ax :
      has_homsets Mon_V isaprop (enriched_assoc_ax).
    Proof.
      intro hsV; do 4 (apply impred; intro); apply hsV.
    Defined.

Identity axiom(s) for enriched categories:
I ⊗ C(a, b) ---> C(b, b) ⊗ C(a, b) \ | \ V C(a, b)
(And the symmetrized version.)
Accessors

Enriched functors


Section Functors.
  Context {D E : enriched_precat}.

  Definition enriched_functor_data : UU :=
     F : enriched_cat_ob D enriched_cat_ob E,
       x y : enriched_cat_ob D,
        Mon_Venriched_cat_mor x y, enriched_cat_mor (F x) (F y).

  Definition make_enriched_functor_data
    (F : enriched_cat_ob D enriched_cat_ob E)
    (mor : x y : enriched_cat_ob D,
       Mon_Venriched_cat_mor x y, enriched_cat_mor (F x) (F y))
    : enriched_functor_data :=
    tpair _ F mor.

Accessors
  Definition enriched_functor_on_objects (F : enriched_functor_data) :
    enriched_cat_ob D enriched_cat_ob E := pr1 F.
  Coercion enriched_functor_on_objects : enriched_functor_data >-> Funclass.
  Definition enriched_functor_on_morphisms (F : enriched_functor_data) :
     x y : enriched_cat_ob D,
      Mon_Venriched_cat_mor x y, enriched_cat_mor (F x) (F y) := pr2 F.

  Notation "# F" := (enriched_functor_on_morphisms F) : enriched.

  Section Axioms.
    Context (F : enriched_functor_data).

    Definition enriched_functor_unit_ax : UU :=
       a : enriched_cat_ob D,
        enriched_cat_id a · #F a a = enriched_cat_id (F a).

    Definition enriched_functor_comp_ax : UU :=
       a b c : enriched_cat_ob D,
        enriched_cat_comp a b c · #F a c =
        (#F b c) #⊗ (#F a b) · enriched_cat_comp _ _ _.
  End Axioms.

  Definition enriched_functor : UU :=
     d : enriched_functor_data,
      enriched_functor_unit_ax d × enriched_functor_comp_ax d.

Constructor
Coercion to *data
Accessors for axioms

  Definition enriched_functor_on_identity (F : enriched_functor) :
    enriched_functor_unit_ax F := (pr1 (pr2 F)).

  Definition enriched_functor_on_comp (F : enriched_functor) :
    enriched_functor_comp_ax F := (pr2 (pr2 F)).
End Functors.

Arguments enriched_functor_data _ _ : clear implicits.
Arguments enriched_functor _ _ : clear implicits.

Notation "# F" := (enriched_functor_on_morphisms F) : enriched.

Definition enriched_functor_identity (A : enriched_precat) : enriched_functor A A.
Proof.
  use make_enriched_functor.
  - use make_enriched_functor_data.
    + intro a.
      exact a.
    + intros x y.
      exact (id _).
  - intro a.
    apply id_right.
  - abstract (intros a b c;
    simpl;
    rewrite (functor_id tensor);
    rewrite id_left, id_right;
    reflexivity).
Defined.

Composition of enriched functors


Definition enriched_functor_comp_data
           {P Q R : enriched_precat}
           (F : enriched_functor_data P Q) (G : enriched_functor_data Q R) :
  enriched_functor_data P R.
Proof.
  use make_enriched_functor_data.
  - exact (λ x, G (F x)).
  - intros x y; cbn.
    refine (_ · (# G (F x) (F y))).
    apply (# F).
Defined.

Definition enriched_functor_comp
           {P Q R : enriched_precat}
           (F : enriched_functor P Q) (G : enriched_functor Q R) :
  enriched_functor P R.
Proof.
  use make_enriched_functor.
  - apply (enriched_functor_comp_data F G).
  -
Unit axioms
    intros a.
    unfold enriched_functor_comp_data; cbn.
    refine (assoc _ _ _ @ _).
    refine (maponpaths (fun ff · _) (pr1 (pr2 F) a) @ _).
    apply enriched_functor_on_identity.
  -
Composition axioms
    intros a b c; cbn.
    refine (assoc _ _ _ @ _).
    refine (maponpaths (fun ff · _) (enriched_functor_on_comp F _ _ _) @ _).
    refine (_ @ !maponpaths (fun ff · _) (tensor_comp _ _ _ _ _)).

    refine (_ @ assoc _ _ _).
    refine (!assoc _ _ _ @ _).
    apply (maponpaths (fun f_ · f)).

    apply enriched_functor_on_comp.
Defined.


Definition enriched_functor_eq {A B : enriched_precat} {F G : enriched_functor A B} : (enriched_functor_to_enriched_functor_data F = enriched_functor_to_enriched_functor_data G) F = G.
Proof.
  intro H.
  use total2_paths_b.
  - assumption.
  - apply proofirrelevance.
    apply isapropdirprod.
    + apply impred_isaprop.
      intro.
      apply homset_property.
    + repeat (apply impred_isaprop;intro).
      apply homset_property.
Defined.

Let nat_trans_ax_l_unitor_inv {x y : Mon_V} (f : x --> y) : f · nat_z_iso_to_trans_inv l_unitor _ = nat_z_iso_to_trans_inv l_unitor _ · (id I #⊗ f) := (nat_trans_ax (nat_z_iso_to_trans_inv l_unitor) _ _ _).

Let nat_trans_ax_r_unitor_inv {x y : Mon_V} (f : x --> y) : f · nat_z_iso_to_trans_inv r_unitor _ = nat_z_iso_to_trans_inv r_unitor _ · (f #⊗ id I) := (nat_trans_ax (nat_z_iso_to_trans_inv r_unitor) _ _ _).

Let nat_trans_ax_α {x x' y y' z z' : Mon_V} (f : x --> x') (g : y --> y') (h : z --> z') : ((f #⊗ g) #⊗ h) · α ((_, _), _) = α ((_, _), _) · (f #⊗ (g #⊗ h)) := nat_trans_ax α _ _ ((_ #, _) #, _).

Section UnderlyingMorphisms.

Definition underlying_morphism {A : enriched_precat} (x y : A) := I --> enriched_cat_mor x y.

Definition precompose_underlying_morphism {A : enriched_precat} {x y : A} (z : A) (f : underlying_morphism x y) : enriched_cat_mor y z --> enriched_cat_mor x z := (nat_z_iso_to_trans_inv r_unitor _ · (id _ #⊗ f) · enriched_cat_comp _ _ _).

Definition postcompose_underlying_morphism {A : enriched_precat} (x : A) {y z : A} (f : underlying_morphism y z) : enriched_cat_mor x y --> enriched_cat_mor x z := (nat_z_iso_to_trans_inv l_unitor _ · (f #⊗ id _) · enriched_cat_comp _ _ _).

Definition precompose_identity {A : enriched_precat} {x y : A} : precompose_underlying_morphism _ (enriched_cat_id x) = id enriched_cat_mor x y.
Proof.
  unfold precompose_underlying_morphism.
  rewrite assoc'.
  apply (transportb (λ f, _ · f = _) (enriched_id_right _ _)).
  apply (is_inverse_in_precat2 (is_z_isomorphism_is_inverse_in_precat (pr2 r_unitor _))).
Qed.

Definition postcompose_identity {A : enriched_precat} {x y : A} : postcompose_underlying_morphism _ (enriched_cat_id y) = id enriched_cat_mor x y.
Proof.
  unfold postcompose_underlying_morphism.
  rewrite assoc'.
  apply (transportb (λ h, _ · h = _) (enriched_id_left _ _)).
  apply (is_inverse_in_precat2 (is_z_isomorphism_is_inverse_in_precat (pr2 l_unitor _))).
Qed.

Lemma precompose_underlying_morphism_enriched_cat_comp {A : enriched_precat} {w x y z : A} (f : underlying_morphism w x) : (# tensor (id _ #, precompose_underlying_morphism y f) · enriched_cat_comp w y z = enriched_cat_comp x y z · precompose_underlying_morphism z f)%cat.
Proof.
  unfold precompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_r_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite (bifunctor_on_morphisms_comm tensor).
  rewrite assoc.
  rewrite (assoc' _ _ (enriched_cat_comp w x z)).
  rewrite (@enriched_assoc A).
  rewrite !assoc.
  rewrite !(bifunctor_comp_right tensor).
  do 2 apply cancel_postcomposition.
  rewrite assoc'.
  rewrite <- (functor_id tensor).
  apply pathsinv0.
  etrans.
  {
    apply cancel_precomposition.
    apply nat_trans_ax_α.
  }
  rewrite assoc.
  apply cancel_postcomposition.
  apply pathsinv0.
  apply right_unitor_inv_of_tensor.
Qed.

Lemma enriched_cat_comp_underlying_morphism_middle {A : enriched_precat} {w x y z : A} (f : underlying_morphism x y) : (# tensor (id _ #, postcompose_underlying_morphism w f) · enriched_cat_comp w y z = #tensor (precompose_underlying_morphism z f #, id _) · enriched_cat_comp w x z)%cat.
Proof.
  unfold precompose_underlying_morphism, postcompose_underlying_morphism.
  rewrite !(bifunctor_comp_left tensor), !(bifunctor_comp_right tensor).
  apply pathsinv0.
  rewrite assoc'.
  rewrite (@enriched_assoc A).
  rewrite !assoc.
  do 2 apply cancel_postcomposition.
  rewrite assoc'.
  etrans.
  {
    apply cancel_precomposition.
    apply nat_trans_ax_α.
  }
  rewrite assoc.
  apply cancel_postcomposition.
  apply monoidal_cat_triangle_eq_inv.
Qed.

Lemma postcompose_underlying_morphism_enriched_cat_comp {A : enriched_precat} {w x y z : A} (f : underlying_morphism y z) : (# tensor (postcompose_underlying_morphism x f #, id _) · enriched_cat_comp w x z = enriched_cat_comp w x y · postcompose_underlying_morphism w f)%cat.
Proof.
  unfold postcompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_l_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (bifunctor_on_morphisms_comm tensor).
  rewrite assoc.
  rewrite !(bifunctor_comp_left tensor).
  rewrite assoc'.
  rewrite (@enriched_assoc A).
  rewrite !assoc.
  do 2 apply cancel_postcomposition.
  rewrite assoc'.
  etrans.
  {
    apply cancel_precomposition.
    apply nat_trans_ax_α.
  }
  rewrite assoc.
  rewrite (functor_id tensor).
  apply cancel_postcomposition.
  apply left_unitor_inv_of_tensor.
Qed.

Definition postcompose_underlying_morphism_composite {A : enriched_precat} (w : A) {x y z : A} (f : underlying_morphism x y) (g : underlying_morphism y z) : postcompose_underlying_morphism w (f · postcompose_underlying_morphism _ g) = postcompose_underlying_morphism _ f · postcompose_underlying_morphism _ g.
Proof.
  unfold postcompose_underlying_morphism.
  rewrite !(bifunctor_comp_left tensor).
  rewrite !assoc'.
  do 2 apply cancel_precomposition.
  rewrite enriched_assoc.
  rewrite !assoc.
  apply cancel_postcomposition.
  match goal with [|- _ · ?f · _ · _ = _] ⇒ rewrite (assoc' _ f) end.
  apply (transportb (λ h, _ · h · _ = _) (nat_trans_ax_α _ _ _)).
  simpl.
  rewrite assoc.
  rewrite (functor_id tensor).
  rewrite assoc'.
  apply (transportb (λ h, h · _ = _) (left_unitor_inv_of_tensor _ _)).
  apply (transportb (λ h, _ · h = _) (bifunctor_on_morphisms_comm tensor _ _)).
  rewrite assoc.
  apply cancel_postcomposition.
  apply pathsinv0.
  apply nat_trans_ax_l_unitor_inv.
Qed.

Definition precompose_underlying_morphism_composite {A : enriched_precat} (w : A) {x y z : A} (f : underlying_morphism x y) (g : underlying_morphism y z) : precompose_underlying_morphism w (f · postcompose_underlying_morphism _ g) = precompose_underlying_morphism _ g · precompose_underlying_morphism _ f.
Proof.
  unfold postcompose_underlying_morphism, precompose_underlying_morphism.
  rewrite !(bifunctor_comp_right tensor).
  rewrite !assoc.
  rewrite (assoc' _ (enriched_cat_comp y z w)).
  rewrite nat_trans_ax_r_unitor_inv.
  rewrite assoc.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  apply (transportb (λ f, _ = _ · f · _) (bifunctor_on_morphisms_comm tensor _ _)).
  rewrite assoc.
  rewrite (assoc' _ _ (enriched_cat_comp x y w)).
  rewrite enriched_assoc.
  rewrite !assoc.
  do 2 apply cancel_postcomposition.
  rewrite <- (functor_id tensor).
  rewrite !assoc'.
  apply cancel_precomposition.
  do 2 rewrite assoc.
  apply (transportb (λ f, _ = _ · f) (nat_trans_ax_α _ _ _)).
  rewrite assoc.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  apply (transportf (λ f, _ = _ · f · _) (right_unitor_inv_of_tensor _ _)).
  rewrite <- (functor_comp tensor).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite nat_trans_ax_l_unitor_inv.
  simpl.
  rewrite <- !(functor_comp tensor).
  apply (transportf (λ f, _ = f · _) (functor_comp tensor _ _)).
  apply (transportf (λ f, _ = f) (functor_comp tensor _ _)).
  repeat change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  apply (maponpaths (λ f, #tensor (_ #, f)))%cat.
  apply (transportb (λ f, _ = f · _) (nat_trans_ax_r_unitor_inv _)).
  simpl.
  rewrite !assoc'.
  eapply pathscomp0.
  apply cancel_precomposition.
  apply pathsinv0.
  apply (bifunctor_on_morphisms_comm tensor).
  apply cancel_postcomposition.
  apply left_unitor_inv_right_unitor_inv_of_unit.
Qed.

Definition underlying_morphism_compose_swap {A : enriched_precat} {x y z : A} (f : underlying_morphism x y) (g : underlying_morphism y z) : f · postcompose_underlying_morphism _ g = g · precompose_underlying_morphism _ f.
Proof.
  unfold postcompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_l_unitor_inv.
  match goal with [|- _ · ?f · _ · _ = _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (functor_comp tensor).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left, id_right.
  unfold precompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_r_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (functor_comp tensor).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left, id_right.
  do 2 apply cancel_postcomposition.
  apply left_unitor_inv_right_unitor_inv_of_unit.
Qed.

Definition pre_post_compose_commute {A : enriched_precat} {w x y z : A} (f : underlying_morphism w x) (g : underlying_morphism y z) : precompose_underlying_morphism _ f · postcompose_underlying_morphism _ g = postcompose_underlying_morphism _ g · precompose_underlying_morphism _ f.
Proof.
  unfold postcompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_l_unitor_inv.
  simpl.
  match goal with [|- _ · ?f · _ · _ = _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (bifunctor_on_morphisms_comm tensor).
  rewrite !assoc'.
  do 2 apply cancel_precomposition.
  unfold precompose_underlying_morphism.
  rewrite !assoc.
  rewrite !bifunctor_comp_right.
  rewrite nat_trans_ax_r_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite (bifunctor_on_morphisms_comm tensor).
  rewrite assoc.
  match goal with [|- _ = ?f · _ · _] ⇒ rewrite (assoc' f) end.
  rewrite (enriched_assoc w).
  rewrite !assoc.
  do 2 apply cancel_postcomposition.
  rewrite assoc'.
  rewrite <- (functor_id tensor).
  apply (transportb (λ h, _ = _ · h) (nat_trans_ax_α _ _ _)).
  rewrite assoc.
  apply cancel_postcomposition.
  apply right_unitor_inv_of_tensor.
Qed.

Definition enriched_functor_on_postcompose {A B : enriched_precat} (F : enriched_functor A B) {y z : A} (f : underlying_morphism y z) (x : A) : postcompose_underlying_morphism x f · enriched_functor_on_morphisms F _ _ = enriched_functor_on_morphisms F _ _ · postcompose_underlying_morphism _ (f · enriched_functor_on_morphisms F _ _).
Proof.
  unfold postcompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_l_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (functor_comp tensor).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left, id_right, <- (id_left (enriched_functor_on_morphisms F x y)).
  change (?x · ?z #, ?y · ?w) with ((x #, y) · (z #, w)).
  rewrite (functor_comp tensor).
  rewrite !assoc'.
  do 2 apply cancel_precomposition.
  apply enriched_functor_on_comp.
Qed.

Definition enriched_functor_on_precompose {A B : enriched_precat} (F : enriched_functor A B) {x y : A} (f : underlying_morphism x y) (z : A) : precompose_underlying_morphism z f · enriched_functor_on_morphisms F _ _ = enriched_functor_on_morphisms F _ _ · precompose_underlying_morphism _ (f · enriched_functor_on_morphisms F _ _).
Proof.
  unfold precompose_underlying_morphism.
  rewrite !assoc.
  rewrite nat_trans_ax_r_unitor_inv.
  match goal with [|- _ = _ · ?f · _ · _] ⇒ rewrite (assoc' _ f) end.
  rewrite <- (functor_comp tensor).
  change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
  rewrite id_left, id_right, <- (id_left (enriched_functor_on_morphisms F y z)).
  change (?x · ?z #, ?y · ?w) with ((x #, y) · (z #, w)).
  rewrite (functor_comp tensor).
  rewrite !assoc'.
  do 2 apply cancel_precomposition.
  apply enriched_functor_on_comp.
Qed.

End UnderlyingMorphisms.

Section NatTrans.

Definition enriched_nat_trans_data {A B : enriched_precat} (F G : enriched_functor A B) := a : A, underlying_morphism (F a) (G a).

Definition enriched_nat_trans_law {A B : enriched_precat} {F G : enriched_functor A B} (a : enriched_nat_trans_data F G) := (x y : A), enriched_functor_on_morphisms F x y · postcompose_underlying_morphism _ (a y) = enriched_functor_on_morphisms G x y · precompose_underlying_morphism _ (a x).

Definition enriched_nat_trans {A B : enriched_precat} (F G : enriched_functor A B) := a : enriched_nat_trans_data F G, enriched_nat_trans_law a.

Definition enriched_nat_trans_data_from_enriched_nat_trans {A B : enriched_precat} {F G : enriched_functor A B} (a : enriched_nat_trans F G) : a : A, I --> enriched_cat_mor (F a) (G a) := pr1 a.
Coercion enriched_nat_trans_data_from_enriched_nat_trans : enriched_nat_trans >-> Funclass.

Definition enriched_nat_trans_ax {A B : enriched_precat} {F G : enriched_functor A B} (a : enriched_nat_trans F G) :enriched_nat_trans_law a := pr2 a.

Definition make_enriched_nat_trans {A B : enriched_precat} {F G : enriched_functor A B} a l : enriched_nat_trans F G := (a,, l).

Definition enriched_nat_trans_eq {A B : enriched_precat} {F G : enriched_functor A B} {a a' : enriched_nat_trans F G} : ( x : A, a x = a' x) a = a'.
Proof.
  intro H.
  use total2_paths_b.
  - apply funextsec.
    assumption.
  - apply proofirrelevance.
    repeat (apply impred_isaprop; intro).
    apply homset_property.
Defined.

Definition enriched_nat_trans_identity {A B : enriched_precat} (F : enriched_functor A B) : enriched_nat_trans F F.
Proof.
  use make_enriched_nat_trans.
  - intro x.
    apply enriched_cat_id.
  - abstract (intros x y;
    rewrite precompose_identity, postcompose_identity;
    reflexivity).
Defined.

Definition enriched_nat_trans_comp {A B : enriched_precat} {F G H : enriched_functor A B} (a : enriched_nat_trans F G) (b : enriched_nat_trans G H) : enriched_nat_trans F H.
Proof.
  use make_enriched_nat_trans.
  - intro x.
    exact (a x · postcompose_underlying_morphism _ (b x)).
  - abstract (intros x y;
    rewrite postcompose_underlying_morphism_composite;
    rewrite assoc;
    rewrite enriched_nat_trans_ax;
    rewrite assoc';
    rewrite pre_post_compose_commute;
    rewrite assoc;
    rewrite enriched_nat_trans_ax;
    rewrite precompose_underlying_morphism_composite;
    apply assoc').
Defined.

End NatTrans.

Section EnrichedFunctorCategory.

Lemma isaset_enriched_nat_trans {A B : enriched_precat} (F G : enriched_functor A B) : isaset (enriched_nat_trans F G).
Proof.
  apply isaset_total2.
  - apply impred_isaset.
    intro.
    apply homset_property.
  - intro.
    apply isasetaprop.
    repeat (apply impred_isaprop; intro).
    apply homset_property.
Qed.

Lemma enriched_nat_trans_assoc {A B : enriched_precat} {F G H K : enriched_functor A B} (f : enriched_nat_trans F G) (g : enriched_nat_trans G H) (h : enriched_nat_trans H K) : enriched_nat_trans_comp f (enriched_nat_trans_comp g h) = enriched_nat_trans_comp (enriched_nat_trans_comp f g) h.
Proof.
  apply enriched_nat_trans_eq.
  intro x.
  cbn.
  rewrite postcompose_underlying_morphism_composite.
  apply assoc.
Qed.

Definition enriched_functor_precategory_data (A B : enriched_precat) : precategory_data.
Proof.
  use make_precategory_data.
  - use make_precategory_ob_mor.
    + exact (enriched_functor A B).
    + intros F G.
      exact (enriched_nat_trans F G).
  - intros c.
    apply enriched_nat_trans_identity.
  - intros a b c f g.
    exact (enriched_nat_trans_comp f g).
Defined.

Definition enriched_functor_category (A B : enriched_precat) : category.
Proof.
  use make_category.
  - use make_precategory.
    + exact (enriched_functor_precategory_data A B).
    + repeat split;simpl.
      × abstract (intros;
        apply enriched_nat_trans_eq;
        intro;
        cbn;
        rewrite underlying_morphism_compose_swap;
        rewrite precompose_identity;
        apply id_right).
      × abstract (intros;
        apply enriched_nat_trans_eq;
        intro;
        cbn;
        rewrite postcompose_identity;
        apply id_right).
      × abstract (intros;
        apply enriched_nat_trans_assoc).
      × abstract (intros;
        apply pathsinv0;
        apply enriched_nat_trans_assoc).
  - intros a b.
    apply isaset_enriched_nat_trans.
Defined.

End EnrichedFunctorCategory.

Section Whisker.

Definition pre_whisker {A B C : enriched_precat} (F : enriched_functor A B) {G H : enriched_functor B C} (a : enriched_nat_trans G H) : enriched_nat_trans (enriched_functor_comp F G) (enriched_functor_comp F H).
Proof.
  use make_enriched_nat_trans.
  - intro x.
    exact (a (F x)).
  - abstract (intros x y;
    simpl;
    rewrite !assoc';
    apply cancel_precomposition;
    apply enriched_nat_trans_ax).
Defined.

Definition post_whisker {A B C : enriched_precat} {F G : enriched_functor A B} (a : enriched_nat_trans F G) (H : enriched_functor B C) : enriched_nat_trans (enriched_functor_comp F H) (enriched_functor_comp G H).
Proof.
  use make_enriched_nat_trans.
  - intro x.
    exact (a x · enriched_functor_on_morphisms H _ _).
  - abstract (intros x y;
    simpl;
    rewrite !assoc';
    rewrite <- enriched_functor_on_precompose, <- enriched_functor_on_postcompose;
    rewrite !assoc;
    apply cancel_postcomposition;
    apply enriched_nat_trans_ax).
Defined.

End Whisker.

Section Unit.

Definition unit_enriched_precat_data : enriched_precat_data.
Proof.
  use make_enriched_precat_data.
  - exact unit.
  - intros.
    exact (monoidal_cat_unit Mon_V).
  - intros.
    exact (id _).
  - intros.
    exact (monoidal_cat_left_unitor Mon_V _).
Defined.

Definition unit_enriched_precat : enriched_precat.
Proof.
  use make_enriched_precat.
  - exact unit_enriched_precat_data.
  - split; cbn.
    + abstract (rewrite (functor_id (monoidal_cat_tensor Mon_V));
      apply id_left).
    + abstract (rewrite (functor_id (monoidal_cat_tensor Mon_V));
      rewrite id_left;
      apply left_unitor_right_unitor_of_unit).
  - abstract (intros a b c d;
    cbn;
    rewrite assoc;
    apply cancel_postcomposition;
    apply (transportb (λ f, # _ (f #, _) =
    _) left_unitor_right_unitor_of_unit)%cat;
    apply (monoidal_cat_triangle_eq Mon_V)).
Defined.

Definition element_functor_data {A : enriched_precat} (a : A) : enriched_functor_data unit_enriched_precat A.
Proof.
  use make_enriched_functor_data.
  - intro.
    exact a.
  - intros x y.
    induction x, y.
    apply enriched_cat_id.
Defined.

Definition element_functor_unit_ax {A : enriched_precat} (a : A) : enriched_functor_unit_ax (element_functor_data a).
Proof.
  intro t.
  induction t.
  simpl.
  apply id_left.
Qed.

Definition element_functor_comp_ax {A : enriched_precat} (a : A) : enriched_functor_comp_ax (element_functor_data a).
Proof.
  intros t t' t''.
  induction t, t', t''.
  cbn.
  apply (@pathscomp0 _ _ (# tensor ((id _ #, enriched_cat_id a) · (enriched_cat_id a #, id _)) · enriched_cat_comp a a a) _)%cat.
  - rewrite (functor_comp tensor).
    rewrite assoc'.
    rewrite (enriched_id_left a).
    apply pathsinv0.
    apply (nat_trans_ax l_unitor).
  - change ((?x #, ?y) · (?z #, ?w)) with (x · z #, y · w).
    rewrite id_left, id_right.
    reflexivity.
Qed.

Definition element_functor {A : enriched_precat} (a : A) : enriched_functor unit_enriched_precat A.
Proof.
  use make_enriched_functor.
  - exact (element_functor_data a).
  - exact (element_functor_unit_ax a).
  - exact (element_functor_comp_ax a).
Defined.

End Unit.

End A.

Arguments enriched_precat_data _ : clear implicits.
Arguments enriched_precat _ : clear implicits.
Arguments enriched_functor_data {_} _ _.
Arguments enriched_functor {_} _ _.
Arguments unit_enriched_precat _ : clear implicits.