Library UniMath.Bicategories.PseudoFunctors.Examples.OpFunctor
The opposite of a category as a pseudofunctor
*********************************************************************************
Require Import UniMath.Foundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.OpCellBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Local Open Scope cat.
Definition functor_identity_op
(C : category)
: functor_identity (C^op)
⟹
functor_opp (functor_identity C).
Proof.
use make_nat_trans.
- exact (λ x, identity x).
- abstract
(intros x y f ; cbn ;
rewrite id_left, id_right ;
apply idpath).
Defined.
Definition functor_comp_op
{C₁ C₂ C₃ : category}
(F : C₁ ⟶ C₂)
(G : C₂ ⟶ C₃)
: functor_opp F ∙ functor_opp G ⟹ functor_opp (F ∙ G).
Proof.
use make_nat_trans.
- exact (λ x, identity _).
- abstract
(intros x y f ; cbn ;
rewrite id_left, id_right ;
apply idpath).
Defined.
Local Notation "∁" := bicat_of_univ_cats.
Definition op_psfunctor_data : psfunctor_data (op2_bicat ∁) ∁.
Proof.
use make_psfunctor_data.
- exact (λ C, op_unicat C).
- exact (λ _ _ f, functor_opp f).
- exact (λ _ _ _ _ x, op_nt x).
- exact (λ C, functor_identity_op _).
- exact (λ _ _ _ F G, functor_comp_op F G).
Defined.
Definition op_psfunctor_laws : psfunctor_laws op_psfunctor_data.
Proof.
repeat split.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. apply idpath.
- intros C D F G H α β ; cbn in ×.
apply nat_trans_eq ; [apply (homset_property (op_cat D) )|].
intro x ; cbn in ×.
apply idpath.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. cbn. apply pathsinv0.
rewrite !id_left.
apply functor_id.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite id_right. apply idpath.
- intros C1 C2 C3 C4 F G H. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C4) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite !id_right.
rewrite functor_id.
apply idpath.
- intros C1 C2 C3 F G H alpha. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C3) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite id_right.
apply idpath.
- intros C1 C2 C3 F1 F2 F3 α ; cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C3) )|].
intros x ; cbn.
rewrite id_left, id_right.
apply idpath.
Qed.
Definition op_psfunctor_invertible_cells
: invertible_cells op_psfunctor_data.
Proof.
split.
- intro C.
use is_nat_iso_to_is_invertible_2cell.
intro.
apply identity_is_iso.
- intros C₁ C₂ C₃ F G.
use is_nat_iso_to_is_invertible_2cell.
intro.
apply identity_is_iso.
Defined.
Definition op_psfunctor : psfunctor (op2_bicat ∁) ∁.
Proof.
use make_psfunctor.
- exact op_psfunctor_data.
- exact op_psfunctor_laws.
- exact op_psfunctor_invertible_cells.
Defined.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.OpCellBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Local Open Scope cat.
Definition functor_identity_op
(C : category)
: functor_identity (C^op)
⟹
functor_opp (functor_identity C).
Proof.
use make_nat_trans.
- exact (λ x, identity x).
- abstract
(intros x y f ; cbn ;
rewrite id_left, id_right ;
apply idpath).
Defined.
Definition functor_comp_op
{C₁ C₂ C₃ : category}
(F : C₁ ⟶ C₂)
(G : C₂ ⟶ C₃)
: functor_opp F ∙ functor_opp G ⟹ functor_opp (F ∙ G).
Proof.
use make_nat_trans.
- exact (λ x, identity _).
- abstract
(intros x y f ; cbn ;
rewrite id_left, id_right ;
apply idpath).
Defined.
Local Notation "∁" := bicat_of_univ_cats.
Definition op_psfunctor_data : psfunctor_data (op2_bicat ∁) ∁.
Proof.
use make_psfunctor_data.
- exact (λ C, op_unicat C).
- exact (λ _ _ f, functor_opp f).
- exact (λ _ _ _ _ x, op_nt x).
- exact (λ C, functor_identity_op _).
- exact (λ _ _ _ F G, functor_comp_op F G).
Defined.
Definition op_psfunctor_laws : psfunctor_laws op_psfunctor_data.
Proof.
repeat split.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. apply idpath.
- intros C D F G H α β ; cbn in ×.
apply nat_trans_eq ; [apply (homset_property (op_cat D) )|].
intro x ; cbn in ×.
apply idpath.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. cbn. apply pathsinv0.
rewrite !id_left.
apply functor_id.
- intros C D F. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat D) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite id_right. apply idpath.
- intros C1 C2 C3 C4 F G H. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C4) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite !id_right.
rewrite functor_id.
apply idpath.
- intros C1 C2 C3 F G H alpha. cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C3) )|].
intro. cbn. apply pathsinv0.
rewrite id_left. rewrite id_right.
apply idpath.
- intros C1 C2 C3 F1 F2 F3 α ; cbn in ×.
apply nat_trans_eq; [apply (homset_property (op_cat C3) )|].
intros x ; cbn.
rewrite id_left, id_right.
apply idpath.
Qed.
Definition op_psfunctor_invertible_cells
: invertible_cells op_psfunctor_data.
Proof.
split.
- intro C.
use is_nat_iso_to_is_invertible_2cell.
intro.
apply identity_is_iso.
- intros C₁ C₂ C₃ F G.
use is_nat_iso_to_is_invertible_2cell.
intro.
apply identity_is_iso.
Defined.
Definition op_psfunctor : psfunctor (op2_bicat ∁) ∁.
Proof.
use make_psfunctor.
- exact op_psfunctor_data.
- exact op_psfunctor_laws.
- exact op_psfunctor_invertible_cells.
Defined.