Library UniMath.Bicategories.Morphisms.Examples.MorphismsInOp2Bicat
Morphisms in op2 bicat
Contents
1. Faithful 1-cells
2. Fully faithful 1-cells
3. Conservative 1-cells
4. Discrete 1-cells
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Core.Examples.OpCellBicat.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Morphisms.FullyFaithful.
Require Import UniMath.Bicategories.Morphisms.DiscreteMorphisms.
Local Open Scope cat.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Core.Examples.OpCellBicat.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Morphisms.FullyFaithful.
Require Import UniMath.Bicategories.Morphisms.DiscreteMorphisms.
Local Open Scope cat.
1. Faithful 1-cells
Definition faithful_op2_bicat
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : faithful_1cell f)
: @faithful_1cell (op2_bicat B) _ _ f.
Proof.
intros z g₁ g₂ α β p.
apply Hf.
exact p.
Defined.
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : faithful_1cell f)
: @faithful_1cell (op2_bicat B) _ _ f.
Proof.
intros z g₁ g₂ α β p.
apply Hf.
exact p.
Defined.
2. Fully faithful 1-cells
Definition fully_faithful_op2_bicat
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : fully_faithful_1cell f)
: @fully_faithful_1cell (op2_bicat B) _ _ f.
Proof.
use make_fully_faithful.
- apply faithful_op2_bicat.
apply fully_faithful_1cell_faithful.
exact Hf.
- intros z g₁ g₂ αf.
simple refine (_ ,, _).
+ exact (fully_faithful_1cell_inv_map Hf αf).
+ cbn.
apply fully_faithful_1cell_inv_map_eq.
Defined.
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : fully_faithful_1cell f)
: @fully_faithful_1cell (op2_bicat B) _ _ f.
Proof.
use make_fully_faithful.
- apply faithful_op2_bicat.
apply fully_faithful_1cell_faithful.
exact Hf.
- intros z g₁ g₂ αf.
simple refine (_ ,, _).
+ exact (fully_faithful_1cell_inv_map Hf αf).
+ cbn.
apply fully_faithful_1cell_inv_map_eq.
Defined.
3. Conservative 1-cells
Definition conservative_op2_bicat
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : conservative_1cell f)
: @conservative_1cell (op2_bicat B) _ _ f.
Proof.
intros z g₁ g₂ α Hα.
apply to_op2_is_invertible_2cell.
apply Hf.
apply from_op2_is_invertible_2cell.
exact Hα.
Defined.
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : conservative_1cell f)
: @conservative_1cell (op2_bicat B) _ _ f.
Proof.
intros z g₁ g₂ α Hα.
apply to_op2_is_invertible_2cell.
apply Hf.
apply from_op2_is_invertible_2cell.
exact Hα.
Defined.
4. Discrete 1-cells
Definition discrete_op2_bicat
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : discrete_1cell f)
: @discrete_1cell (op2_bicat B) _ _ f.
Proof.
split.
- apply faithful_op2_bicat.
apply Hf.
- apply conservative_op2_bicat.
apply Hf.
Defined.
{B : bicat}
{x y : B}
{f : x --> y}
(Hf : discrete_1cell f)
: @discrete_1cell (op2_bicat B) _ _ f.
Proof.
split.
- apply faithful_op2_bicat.
apply Hf.
- apply conservative_op2_bicat.
apply Hf.
Defined.