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Abstract

Homotopy type theory, with the partition of types into levels and the univalence
axiom developed by Voevodsky, provides both a new logical foundation for
mathematics (Univalent Foundations) and a formal language usable with computers
for checking the proofs mathematicians make daily. As a foundation, it replaces set
theory with a framework where propositions and sets are defined in terms of a more
primitive notion called type – in this framework the notion of symmetry arises at the
most basic level: from the logic. As a formal language, it encodes the axioms of
mathematics and the rules of logic simultaneously, and promises to make the
extraction of algorithms and values from constructive proofs easy. As a mathematical
topic, it offers an intriguing range of open problems at all levels of accessibility.
I will give an intuitive introduction to these recent developments.



The memorial web site





The Fields Medal is awarded, 2002



From the laudatory article in the conference proceedings



From a public lecture, March 26, 2014



A comparison

1994 version:

2006 version:



From a public lecture, March 26, 2014



An email from 2002

Date: Tue, 10 Sep 2002 09:15:21 -0400 (EDT)
From: Vladimir Voevodsky <vladimir@ias.edu>
To: dan@math.uiuc.edu

...

Vladimir.

PS I am thinking again about the applications of computers to pure
math. Do you know of anyone working in this area? I mean mostly
some kind of a computer language to describe mathematical structures,
their properties and proofs in such a way that ultimately one may
have mathematical knowledge archived and logically verified in a
fixed format.





2 ∈ 4 ?

If 4 := {0, 1, 2, 3}, then yes.

If 4 := {3}, then no.

The two approaches yield isomorphic models of the natural numbers, so the answer
ought to be the same, according to Voevodsky’s insight.
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Introduction to topology

The animations on this slide and on subsequent slides can be viewed with Acrobat Reader.









A fibration



Topology in combinatorial style



The syntax of Martin-Löf type theory

x : X

f : X → Y

p : x = x ′

q : X = Y

X , Y : U

f : X ∼= Y



Univalence Axiom: (X = Y )
∼=−→ (X ∼= Y )

. . . as viewed in topology:

∼=−→



Univalence Axiom: (X = Y )
∼=−→ (X ∼= Y )

. . . as viewed in topology:

∼=−→





Date: Mon, 01 May 2006 10:10:30 CDT
To: Peter May <may@math.uchicago.edu>
From: "A. Bousfield" <bous@uic.edu>
Subject: Re: Simplicial question

Dear Peter,

I think that the answer to Voevodsky’s basic question is "yes," and I’ll
try to sketch a proof.

Since the Kan complexes X and Y are homotopy equivalent, they share the
same minimal complex M, and we have trivial fibrations X -> M and Y -> M
by Quillen’s main lemma in "The geometric realization of a Kan fibration
." Thus X + Y -> M + M is also a trivial fibration where "+" gives the
disjoint union. We claim that the composition of X + Y -> M + M with the
inclusion M + M >-> M x Deltaˆ1 may be factored as the composition of an
inclusion X + Y >-> E with a trivial fibration E -> M x Deltaˆ1 such that
the counterimage of M + M is X + Y. We may then obtain the desired
fibration

E -> M x Deltaˆ1 -> Deltaˆ1

whose fiber over 0 is X and whose fiber over 1 is Y.

We have used a case of:

Claim. The composition of a trivial fibration A -> B with an inclusion B
-> C may be factored as the composition of an inclusion A >-> E with a
trivial fibration E -> C such that the counterimage of B is A.

...



His first lecture about univalent foundations



Univalent Foundations



Coq



The notion of h-level, in his Foundations



The notion of h-level, in his Foundations

A type X is of h-level 0 if it has a unique element.
A type X is of h-level ≤ n + 1 if for all x , y in X , the type x = y is of h-level ≤ n.

. . . alternatively: . . .

A type X is of h-level 1 if any two elements of it are equal.
A type X is of h-level ≤ n + 1 if for all x , y in X , the type x = y is of h-level ≤ n.
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The notion of h-level, in his Foundations

A type X is of h-level 1 if any two elements of it are equal.
A type X is of h-level ≤ n + 1 if for all x , y in X , the type x = y is of h-level ≤ n.

. . . and then we define: . . .

A type X is a proposition if it is of h-level ≤ 1 [Awodey-Bauer, 2001].
A type X is a set if it is of h-level ≤ 2.



Voevodsky’s notion of h-level

h-level type T elements identity types
0 true
1 proposition proofs p, q p = q is true

2 set elements x , y x = y is a proposition
3 a type of h-level ≤ 3 elements G , H G = H is a set
...

...
...

...
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The univalence axiom, in his Foundations

A function f : X → Y is an equivalence if, for each y in Y , there is just one x in X
with f (x) = y .

The notation for a function being an equivalence is f : X
∼=−→ Y .

The notation for the type of all equivalences between X and Y is X ∼= Y .

Univalence Axiom: (X = Y )
∼=−→ (X ∼= Y )
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The univalence axiom, in his Foundations

A function f : X → Y is an equivalence if, for each y in Y , there is just one x in X
with f (x) = y .

The notation for a function being an equivalence is f : X
∼=−→ Y .

The notation for the type of all equivalences between X and Y is X ∼= Y .

Univalence Axiom: (X = Y )
∼=−→ (X ∼= Y )



An example of a type of h-level 3

The type of all triangles (with unlabeled vertices).



Feasibility of the encoding, in his Foundations

▶ functions whose corresponding values are all equal, are equal
▶ the type of functions from one set to another is a set
▶ a subtype of a set is a set (call it a subset)
▶ the type of all subsets∗ of a set is a set;
▶ whether a type is of h-level ≤ n, is a proposition
▶ equivalences have inverse functions that are equivalences
▶ whether a function is an equivalence, is a proposition
▶ the type of natural numbers and the finite types are sets
▶ equivalent types have the same h-level
▶ propositions that imply each other are equivalent
▶ subsets defined by equivalent predicates are equal



How to encode the notion of “group”

Let U be a universe.

A group in U is a sequence (G , e, i , m, λ, ρ, λ′, ρ′, α, ι), where
▶ G is a type of U
▶ e : G
▶ i : G → G
▶ m : G × G → G
▶ λ is a proof that for every a : G , m(e, a) = a
▶ ρ is a proof that for every a : G , m(a, e) = a
▶ λ′ is a proof that for every a : G , m(i(a), a) = e
▶ ρ′ is a proof that for every a : G , m(a, i(a)) = e
▶ α is a proof that for every a, b, c : G , m(m(a, b), c) = m(a, m(b, c))
▶ ι is a proof that G is a set



Another way to encode the notion of “group”

Let U be a universe.

A group in U is a sequence (BG , w , c, ℓ), where
▶ BG is a type of U
▶ w : BG
▶ c is a proof that BG is connected, i.e., ∀x : BG ∃p : x = w
▶ ℓ is a proof that BG is of h-level ≤ 3

A group homomorphism from (BG , w , c, ℓ) to (BG ′, w ′, c ′, ℓ′) is
▶ a function f : BG → BG ′

▶ an identity p : f (w) = w ′



An example of a group of order 6
The type of all triangles having all sides of length 1,

with one triangle chosen (for movies to start and end with).



The special year



The book



The UniMath repository of proofs



Vladimir’s final project











Topology in another combinatorial style





A cubical proof assistant



Fossil hunting at a latitude of 78.3
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