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Definition of H-Levels

isofhlevel(n,X) : Nat→ U→ hProp

isofhlevel(0,X) := iscontr(X)

isofhlevel(S(n),X) :=
∏

x,x′:X

isofhlevel(n,x = x′)

Definition
A set is a type of hlevel 2.

Under the intended semantics, this means that for any two parallel
paths in a set, the space of homotopies between them is
contractible. This condition is equivalent to being homotopy
equivalent to a discrete space.



Closure properties

•
∑

x:A B(x) is a set if A and all B(x) are

• A× B is a set if A and B are

•
∏

x:A B(x) is a set if all B(x) are

• A→ B is a set if B is

• A is a set if it is a property

Exercise
Do you know

• a type that is a set?

• a type for which you don’t know (yet) whether it is a set?
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Decidable equality

Definition
A type X is decidable if we can write a term of type

X +¬X

Definition
A type X has decidable path-equality if we can write a term of
type

∏

x,x′:A

(x = x′) +¬(x = x′)

(that is, if all its paths types are decidable)



Hedberg’s theorem

Theorem
If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.



Are all types sets?

Is there a type that is not a set?
Great question! It depends:

• In “spartan” type theory some types cannot be shown to be
sets.

• In univalent type theory some types can shown not to be sets.

From now on, we consider univalent type theory.



Another set

Theorem
The type

hPropU :=
∑

X:U

isaprop(X)

is a set.

The proof relies on the univalence axiom for the unviverse U.

Exercise
How would you generalize the above statement to any h-level?
How would you attempt proving it?



Types that are not sets

Exercise
Let U be a univalent universe that contains the type Bool. Why is U
not a set?

Which property of Bool does the proof of the above result exploit?



Sets and propositions

It is often useful for types representing “properties” to be
propositions (as we’ll see later).
Properties involving equality are usually propositions when the
types involved are sets, but in general care is needed: given
f : X→ Y,

isInjective(f) :=
∏

x,x′:X

f(x) = f(x′)→ x = x′

is not a proposition in general, but it is if X and Y are sets.
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Set-level quotient
Given type X and relation R on X, the quotient

X
p
−→ X/R

is defined as the unique pair (X/R,p) such that any compatible map
f into a set Y factors via p:

X

p

��

f

��
X/R

∃! f ′
// Y

that is,

∑

f :X→Y

iscompatible(f) ' X/R→ Y

(more precisely, the map given by precomposition with p should be
an equivalence).



Predicates on types

A subtype A on a type X is a map

A : X→ hPropU

Exercise
Show that the type of subtypes of X is a set.

The carrier of a subtype A is the type of elements satisfying A:

carrier(A) :=
∑

x:X

A(x)



Relations on a type

A binary relation R on a type X is a map

R : X→ X→ hPropU

Exercise
Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

re�exive(R) :=
∏

x:X

R(x)(x)

Exercise
Formulate the properties of being symmetric, transitive, an
equivalence relation.



The quotient set

To define the quotient X/R of a set by an equivalence relation, we
proceed as usual in set theory.
First we define for a subtype A : X→ hPropU

iseqclass(A) :=‖carrier(A)‖

×
∏

x,y:A

Rxy→ Ax→ Ay

×
∏

x,y:A

Ax→ Ay→ Rxy

Then we define

X/R :=
∑

A:X→hPropU

iseqclass(A)
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Reminder: paths between pairs

Given B : A→ U and a,a′ : A and b : B(a) and b′ : B(a′),

(a,b) = (a′,b′) '
∑

p:a=a′
transportB

�

p, b
�

= b′

If B(x) is a proposition for any x : A, then this simplifies to

(a,b) = (a′,b′) ' a= a′

Exercise
Why?



Groups

Traditionally (in set theory), a group is a quadruple (G,m, e, i) of

• a set G

• a multiplication m : G×G→ G

• a unit e ∈ G

• an inverse i : G→ G

subject to the usual axioms.



Groups in type theory

In type theory, a group is a (dependent) pair (data,proof) where

• data is a quadruple (G,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data,proof) and (data′,proof ′) as
being the same if data is the same as data′.
This requires that the type encoding the group axioms be a
proposition.
This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise
Why?
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Group isomorphisms

The type of groups is

Grp :=
∑

X:hSet

GrpStructure(X)

A group isomorphism G→ G′ is
• a bijective function on the underlying sets X→ X′

• compatible with the group structures S and S′ on X and X′.



Identity is isomorphism for groups

G= G′ ' (X,S) = (X′,S′)

'
∑

p:X=X′
transportGrpStructure(p,S) = S′

'
∑

p:X=X′
(transportY 7→(Y×Y→Y)(p,m) = m′)

× (transportY 7→(Y→Y)(p, i) = i′)

× (transportY 7→(1→Y)(p, e) = e′)

'
∑

f :X'X′

�

f ◦m ◦ (f−1 × f−1) = m′
�

×
�

f ◦ i ◦ f−1 = i′
�

× (f ◦ e= e′)

' (G∼= G′)
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