The precategory of abelian groups
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-06.
Last modified on 2023-09-26.
module group-theory.precategory-of-abelian-groups where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.homomorphisms-abelian-groups
Idea
The precategory of abelian groups consists of abelian groups and group homomorphisms.
Definition
The large precategory of abelian groups
Ab-Large-Precategory : Large-Precategory lsuc (_⊔_) Large-Precategory.obj-Large-Precategory Ab-Large-Precategory = Ab Large-Precategory.hom-set-Large-Precategory Ab-Large-Precategory = hom-set-Ab Large-Precategory.comp-hom-Large-Precategory Ab-Large-Precategory {X = A} {B} {C} = comp-hom-Ab A B C Large-Precategory.id-hom-Large-Precategory Ab-Large-Precategory {X = A} = id-hom-Ab A Large-Precategory.associative-comp-hom-Large-Precategory Ab-Large-Precategory {X = A} {B} {C} {D} = associative-comp-hom-Ab A B C D Large-Precategory.left-unit-law-comp-hom-Large-Precategory Ab-Large-Precategory {X = A} {B} = left-unit-law-comp-hom-Ab A B Large-Precategory.right-unit-law-comp-hom-Large-Precategory Ab-Large-Precategory {X = A} {B} = right-unit-law-comp-hom-Ab A B
The small categories of abelian groups
Ab-Precategory : (l : Level) → Precategory (lsuc l) l Ab-Precategory = precategory-Large-Precategory Ab-Large-Precategory
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-06. Egbert Rijke. Big cleanup continued (#597).