Commutators of elements in groups

Content created by Egbert Rijke, Andreas Källberg, Fredrik Bakke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2022-08-29.
Last modified on 2023-09-10.

module group-theory.commutators-groups where
Imports
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.commuting-elements-groups
open import group-theory.groups

Idea

A commutator gives an indication of the extent to which a group multiplication fails to be commutative.

The commutator of two elements, g and h, of a group G, is the element [g, h] = (gh)(hg)⁻¹.

https://en.wikipedia.org/wiki/Commutator#Group_theory

Definition

module _
  {l : Level} (G : Group l)
  where

  commutator-Group : type-Group G  type-Group G  type-Group G
  commutator-Group x y = right-div-Group G (mul-Group G x y) (mul-Group G y x)

Properties

The commutator of x and y is unit if and only x and y commutes

module _
  {l : Level} (G : Group l)
  where

  is-unit-commutator-commute-Group :
    (x y : type-Group G) 
    commute-Group G x y  is-unit-Group G (commutator-Group G x y)
  is-unit-commutator-commute-Group x y H =
    is-unit-right-div-eq-Group G H

  commute-is-unit-commutator-Group :
    (x y : type-Group G) 
    is-unit-Group G (commutator-Group G x y)  commute-Group G x y
  commute-is-unit-commutator-Group x y H =
    eq-is-unit-right-div-Group G H

The inverse of the commutator [x,y] is [y,x]

  inv-commutator-Group :
    (x y : type-Group G) 
    inv-Group G (commutator-Group G x y)  commutator-Group G y x
  inv-commutator-Group x y =
    inv-right-div-Group G (mul-Group G x y) (mul-Group G y x)

Recent changes