Axiom L
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, Fernando Chu, Julian KG, fernabnor and louismntnu.
Created on 2022-08-26.
Last modified on 2023-06-25.
module foundation.axiom-l where
Imports
open import foundation.dependent-pair-types open import foundation.sets open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.univalence
Idea
Axiom L, which is due to Peter Lumsdaine, asserts that for any two types X
and
Y
in a common universe, the map X = Y → X ≃ Y
is an embedding. This axiom
is a common generalization of the univalence axiom and axiom K, in the sense
that both univalence and axiom K imply axiom L.
Definition
axiom-L : (l : Level) → UU (lsuc l) axiom-L l = (X Y : UU l) → is-emb (equiv-eq {A = X} {B = Y}) emb-L : {l : Level} → axiom-L l → (X Y : UU l) → (X = Y) ↪ (X ≃ Y) pr1 (emb-L H X Y) = equiv-eq pr2 (emb-L H X Y) = H X Y
Properties
Axiom L generalizes the univalence axiom
axiom-L-univalence : {l : Level} → ((A B : UU l) → UNIVALENCE A B) → axiom-L l axiom-L-univalence ua A B = is-emb-is-equiv (ua A B)
Axiom L generalizes axiom K
axiom-L-axiom-K : {l : Level} → ((A : UU l) → axiom-K A) → axiom-K (UU l) → axiom-L l axiom-L-axiom-K K K-UU A B = is-emb-is-prop-is-set ( is-set-axiom-K K-UU A B) ( is-set-equiv-is-set ( is-set-axiom-K (K A)) ( is-set-axiom-K (K B)))
See also
- Axiom L is sufficient to prove that
Id : A → (A → 𝒰)
is an embedding. This fact is proven infoundation.universal-property-identity-types
Recent changes
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-14. Egbert Rijke. Torsorial type families (#656).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644).