(*
Model Categories
In this file, we define the notion of a model structure on a
category. We also define an alternative way of defining
such a structure. A model structure consists of two interacting
Weak Factorization Systems (WFS), defined in ./WFS.v.
Model structures form a big motivation for WFSs, which, as well
as actual model structures, can be generated using Quillen's
Small Object Argument. This argument has been refined by
Richard Garner to be more algebraically sound: the
Algebraic Small Object Argument. The theory of this formalization
started off by rewriting an effort by Reid Barton on this topic,
which can be found here:
https://github.com/rwbarton/lean-model-categories/tree/lean-3.4.1
Important sources:
- More Concise Algebraic Topology (MCAT)
- My thesis: https://studenttheses.uu.nl/handle/20.500.12932/45658
Contents:
- Definition of model categories
- Alternative way of constructing a model structure
*)
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.ModelCategories.Lifting.
Require Import UniMath.ModelCategories.Retract.
Require Import UniMath.ModelCategories.MorphismClass.
Require Import UniMath.ModelCategories.WFS.
Require Import UniMath.ModelCategories.WeakEquivalences.
Section modelcat.
Local Open Scope cat.
Local Open Scope morcls.
Local Open Scope retract.
Definition is_model_category {C : category} (W K F : morphism_class C) :=
is_weak_equivalences W × is_wfs K (F ∩ W) × is_wfs (K ∩ W) F.
Definition make_is_model_category {C : category} (W K F : morphism_class C)
(weq : is_weak_equivalences W) (cfw_wfs : is_wfs K (F ∩ W)) (cwf_wfs : is_wfs (K ∩ W) F) : is_model_category W K F :=
make_dirprod weq (make_dirprod cfw_wfs cwf_wfs).
Definition model_category (C : category) :=
∑ (W K F : morphism_class C), is_model_category W K F.
Lemma isprop_is_model_category {C : category} (W K F : morphism_class C) : isaprop (is_model_category W K F).
Proof.
apply isapropdirprod.
apply isaprop_is_weak_equivalences.
apply isapropdirprod; apply isaprop_is_wfs.
Defined.
Lemma is_model_category_mk' {C : category} {W K AF AK F : morphism_class C}
(weq : is_weak_equivalences W)
(kaf : is_wfs K AF) (akf : is_wfs AK F)
(hAF : AF = F ∩ W) (hAK : AK ⊆ W) :
is_model_category W K F.
Proof.
use make_is_model_category.
- assumption. (* W are still the weak equivalences *)
- rewrite hAF in kaf. (* K and AF = F ∩ W is a WFS by assumption (caf) *)
assumption.
- (* suffices to show K ∩ W ⊆ AK *)
enough (K ∩ W ⊆ AK) as kw_sak.
{
(* since then K ∩ W = AK *)
assert (K ∩ W = AK) as kw_ak.
{
(* only need to show other inclusion *)
apply (morphism_class_subset_antisymm kw_sak).
(* take f ∈ AC *)
intros a b f hf.
split.
- (* AC = llp F *)
rewrite (is_wfs_llp akf) in hf.
(* C = llp AF *)
rewrite (is_wfs_llp kaf).
(* so now goal is llp F ⊆ llp AF *)
revert a b f hf.
(* use antisymmetry of llp to convert goal into AF ⊆ F *)
apply llp_anti.
intros x y g hg.
(* this is trivial, since AF = F ∩ W, but requires some work in UniMath *)
rewrite hAF in hg.
destruct hg as [hgf ?].
exact hgf.
- (* f ∈ AC ⊆ W (by hAC) *)
exact (hAK _ _ _ hf).
}
(* K ∩ W = AK and F are a WFS by assumption (akf) *)
rewrite kw_ak.
exact akf.
}
{
(* we show that indeed, C ∩ W ⊆ AC *)
intros a b f hf.
destruct hf as [f_k f_w].
(* factorize f through c, g : a --> c ∈ AK, h : c --> b ∈ F *)
set (acf_fact := (is_wfs_fact akf) _ _ f).
use (hinhuniv _ acf_fact).
clear acf_fact; intro acf_fact.
destruct acf_fact as [c [g [h [g_ak [h_f gh]]]]].
(* h ∈ W by 2 out of 3 property (h ∘ g = f) *)
assert (h_w : (W _ _) h).
{
(* g ∈ AC ⊆ W *)
specialize (hAK _ _ _ g_ak) as g_w.
apply ((is_weq_cancel_left weq) _ _ _ _ _ g_w).
rewrite gh.
exact f_w.
}
(* h ∈ AF because AF = F ∩ W and h ∈ F by definition *)
assert (h_af : (AF _ _) h).
{
rewrite hAF.
split.
- exact h_f.
- exact h_w.
}
(* extract lift l from
g
a ----> c
| l / |
f | / | h
v / v
b ===== b
*)
use (wfs'lp (make_wfs K AF kaf) f_k h_af g (identity b)).
{
(* commutativity of diagram *)
rewrite id_right.
exact gh.
}
intros hl.
destruct hl as [l [hl1 hl2]].
(* this uses the retract argument
a ===== a ===== a
| | |
f | | g | f
v v v
b ----> c ----> b
l h
to show that f is a retract of g
*)
assert (r : retract g f).
{
use (make_retract (identity a) (identity a) l h).
use make_is_retract.
- now rewrite id_left.
- assumption.
- rewrite id_left. now symmetry.
- rewrite id_left. now symmetry.
}
(* so since g ∈ AK in a WFS acf = (AK, F), so must f be *)
exact (wfs_L_retract (make_wfs AK F akf) r g_ak).
}
Qed.
End modelcat.