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Lectures 1–4: basics of Univalent Foundations and Coq.

Lectures 5–7: developing mathematics in UF.

In Lecture 3, Paige introduced UF, hlevels, propositions, and sets.

This lecture is a deeper dive into sets in UF.
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Homotopy levels

isofhlevel : Nat→ Type→ Type
isofhlevel(0)(X) :≡ isContr(X)

isofhlevel(S(n))(X) :≡
∏

x,y:X
isofhlevel(n,x = y)

isProp(X) :≡ isofhlevel(1)(X)

≡
∏

x,y:X
isContr(x = y)

Prop :≡
∑

X:Type

isProp(X)
types with at most
one element (proof)

X has exactly one element
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Sets

Definition
isSet(X) :≡ isofhlevel(2)(X)

≡
∏

x,y:X
isProp(x = y)

Set :≡
∑

X:Type

isSet(X)
at most one path (equality)
between any two elements



Sets

Sets are the types which satisfy Uniqueness of Identity Proofs:
• If p,q : x = y then p= q.
• In particular, if p : x = x then p= refl(x).

But working with sets in UF is not the same as working in a type theory with global UIP.
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Decidable equality

Definition
A type X is decidable if

X +¬X

Definition
A type X has decidable equality if all of its path types are decidable, i.e.,

∏

x,y:A
(x = y) +¬(x = y)



Hedberg’s theorem

Theorem (Hedberg)
If a type X has decidable equality, then X is a set.

Exercise
Prove that Bool and Nat have decidable equality.



Closure properties

•
∑

x:A B(x) is a set if A and all B(x) are
• A× B is a set if A and B are
•
∏

x:A B(x) is a set if all B(x) are
• A→ B is a set if B is
• A is a set if it is a proposition

Exercise
Do you know
• a type that is a set?
• a type for which you don’t know (yet) whether it is a set?
• a type for which you know it is not a set?



Another set

Exercise
Prove that Prop is a set.

The proof relies on the univalence axiom for the universe Type.

(Note that Prop does not have decidable equality.)

∑

X:Type isProp(X)



Non-sets

Is there a type that is not a set?
• In Martin-Löf type theory, some types can not be shown to be sets.
• In univalent type theory, some types can be shown to not be sets.



Non-sets

Suppose that Type is a univalent universe containing the type Bool.

Exercise
Prove that Type is not a set.

(Which property of Bool does the proof of the above result exploit?)

Exercise
Prove that Set is not a set. (What hlevel does it have, if any?)



Sets and propositions

It is often useful to ensure that types intended to capture “properties” are propositions.

Definition
An even natural number is a term of type

Even :≡
∑

n:Nat

iseven(n)

i.e., a pair of a natural number n : Nat and a proof p that n is even.

When are two Evens equal? Hopefully, when they are equal as Nats:

(n,p) = (n′,p′) ≃ n= n′



Reminder: paths between pairs

Given B : A→ Type and a,a′ : A and b : B(a) and b′ : B(a′),

(a,b) = (a′,b′) ≃
∑

p:a=a′
transportB

�

p, b
�

= b′

Exercise
If B(x) is a proposition for all x : A, then this can be simplified to:

(a,b) = (a′,b′) ≃ a= a′

By the above, Evens will have the “right” notion of equality if iseven(n) is a proposition.



Sets and propositions

One important property of sets is that equations in sets are propositional (hence
“properties”). But in general, one must be careful about equational conditions. . .

Example
Given f : X→ Y,

isInjective(f) :≡
∏

x,x′:X

f(x) = f(x′)→ x = x′

is not a proposition in general, but it is if X is a set.

Exercise
Define isInjective(f) in a such a way that it is a proposition for X and Y of any level.



Isomorphism vs. equivalence

Example
Given f : X→ Y,

isiso(f) :≡
∑

g:Y→X
(g ◦ f = 1X)× (f ◦ g= 1Y)

is not a proposition in general, but it is if X and Y are sets.

Warning
Stating the univalence axiom with isomorphisms instead of equivalences yields an
inconsistency.

But, when X and Y are sets, then isiso(f)≃ isequiv(f).
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Monoids

In set theory, a monoid is a triple (M,µ, e) of
• a set M
• a multiplication µ : M×M→M
• a unit e ∈M

satisfying the axioms of associativity, left neutrality, and right neutrality.

(Many examples, such as the natural numbers or integers with µ= addition, e= 0.)



Monoids in type theory

In type theory, a monoid is a 6-tuple (M,µ, e,α,λ,ρ) of
1. M : Set
2. µ : M×M→M
3. e : M
4. α : Π(a,b,c:M)µ(µ(a,b), c) = µ(a,µ(b, c)) (associativity)
5. λ : Π(a:M)µ(e,a) = a (left neutrality)
6. ρ : Π(a:M)µ(a, e) = a (right neutrality)

Why M : Set instead of M : Type?
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The type of monoids

When are two monoids equal? We want equality of monoids to depend only on M and
the data (µ, e), not on the proofs (α,λ,ρ) that the data satisfy the monoid axioms.

Reparenthesizing as (M, (µ, e), (α,λ,ρ)),

Monoid :≡
∑

M:Set

∑

(µ,e):MonoidStr(M)

MonoidAxioms(M, (µ, e))

we see:
• This is ensured if the type MonoidAxioms(M, (µ, e)) is a proposition.
• This is in turn guaranteed as long as M is a set, hence the restriction.



Monoid isomorphisms

Definition
A monoid isomorphism between M≡ (M,µ, e,α,λ,ρ) and M′ ≡ (M′,µ′, e′,α′,λ′,ρ′)
is an isomorphism of sets f : M ∼=M′ which preserves the multiplication/unit, i.e.,

∏

a,b:M

f(µ(a,b)) = µ′(f(a), f(b))

f(e) = e′

Exercise
The type of equalities M= M′ of monoids is equivalent to the type of monoid
isomorphisms M∼=M′.



Monoid isomorphisms

Proof sketch:

M= M′ ≡ (M,µ, e,α,λ,ρ) = (M′,µ′, e′,α′,λ′,ρ′)
≃ (M,µ, e) = (M′,µ′, e′)

≃
∑

p:M=M′
(transportY 7→(Y×Y→Y)(p,µ) = µ′)

× (transportY 7→Y(p, e) = e′)

≃
∑

f :M∼=M′

�

f ◦µ ◦ (f−1 × f−1) = µ′
�

× (f(e) = e′)
≃ M∼=M′



Transport along monoid isomorphisms

We now have two ingredients:
1. (M= M′) ≃ (M∼=M′)
2. transportT : (M= M′)→ T(M)→ T(M′) for any T : Monoid→ Type

Combining these, we get
(M∼=M′)→ T(M)→ T(M′)

In other words, any property or structure on monoids expressible in UF can be
transported along isomorphism of monoids.

Example
If M is commutative and M∼=M′, then M′ is commutative.
(Regardless of what commutative means!)



Structure Identity Principle

This is known as the Structure Identity Principle (Coquand, Aczel):

Isomorphic mathematical structures are equal as structured types,
and hence have the same structural properties.

The Structure Identity Principle holds in Univalent Foundations for many algebraic
structures; isomorphic such structures have all the same (definable) properties.
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Predicates on types

A subtype A on a type X is a (prop-valued) predicate, i.e., a map

A : X→ Prop

Exercise
Prove that the type of subtypes of X is a set.

The carrier of a subtype A is the type of elements of X satisfying A:

carrier(A) :=
∑

x:X
A(x)



Relations on a type

A binary relation R on a type X is a map

R : X→ X→ Prop

Exercise
Prove that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :≡
∏

x:X
R(x)(x)

Exercise
Formulate the properties of being symmetric, transitive, and an equivalence relation.



Set-level quotient

The quotient of a type X by an equivalence relation R on X is a pair (X/R,p) of a type
X/R and a map p : X→ X/R such that any R-compatible map f into a set Y factors
uniquely via p:

X

p

��

f

��

X/R
∃! f ′

// Y (set)

The quotient (X/R,p) is unique if it exists. MLTT does not have quotients in general,
but in UF we can define them as the set of equivalence classes of R, as in set theory.

∏

x,y:A R x y→ f(x) = f(y)



The quotient set

Definition
A subtype A : X→ Prop is an equivalence class of R if

iseqclass(A,R) :≡ ||carrier(A)|| ×

 

∏

x,y:X
Rxy→ Ax→ Ay

!

×

 

∏

x,y:X
Ax→ Ay→ Rxy

!

Then we may define:
X/R :≡

∑

A:X→Prop

iseqclass(A,R)

Exercise
Define p : X→ X/R, prove that X/R is a set, and prove that (X/R,p) has the universal
property of a quotient.
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