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Moving from classical foundations to
univalent foundations

• Mathematics is the study of structures on sets and their higher
analogs.
• Set-theoretic mathematics constitutes a subset of the

mathematics that can be expressed in univalent foundations.
• Classical mathematics is a subset of univalent mathematics

consisting of the results that require LEM and/or AC among
their assumptions.

see Voevodsky, Talk at HLF, Sept 2016
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Interpretation of identities as paths

Inhabitants of Id(a,a′) behave like classical equality
• reflexivity, symmetry, transitivity
• transportB : B(x)× Id(x,y)→ B(y)

Inhabitants of Id(a,a′) behave unlike classical equality
• There can be two identities p,q : Id(x,y).
• There can be identities of identities

α : IdId(x,y)(p,q), (∗)

• but there don’t always have to be.

We interpret terms of IdX(x,y) as paths from x to y in X and
sometimes write

x⇝X y.



Identities interpreted as paths in a space

p,q : x⇝X y
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Reflexivity (refl) is interpreted as the constant path on a point x.



Operations on paths

• p : x⇝ y

• sym(p) : y⇝ x
• r : y⇝ z
• trans(p, r) : x⇝ z
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Transport in pictures

transportB : x⇝ y→ B(x)→ B(y)

A

x

b : B(x)

y

transportB(p,b) : B(y)

p



Functions map paths, not just points

f : A→ B

A
x y

p
Bf(x)

f(y)

f(p)

Exercise
Given f : A→ B, construct a term of type

∏

x,y:A
x⇝A y→ f(x)⇝B f(y)



Paths between paths

What is a path
h : p⇝x⇝y q

between paths?

Intuition: continuous deformation of the first into the second path,
called a homotopy
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Laws satisfied by path concatenation

Can construct homotopies
• (p · q) · r⇝ p · (q · r)
• p · 1y⇝ p
• 1x · p⇝ p
• p · p−1⇝ 1x
• p−1 · p⇝ 1y
• . . .

Theorem (Garner, van den Berg)

(A,⇝A,⇝⇝A
, . . .)

forms∞-groupoid, i.e., groupoid laws hold up to “higher” paths



Interpreting types as topological spaces?

We have not mentioned yet what a “space” or∞-groupoid is.

Types as topological spaces?
It seems difficult (impossible?) to give a formal interpretation of
type theory in the category of topological spaces.

Types as Kan complexes
Vladimir Voevodsky has given an interpretation of type theory in
the category of Kan complexes.

There is a ‘Quillen equivalence’ between that category and the
category of topological spaces, justifying the intuition of ‘types as
(topological) spaces’.



Interpreting types as simplicial sets

Syntax Simpl. set interpretation

(A,⇝A,⇝⇝A
, . . .) Kan complex A

a : A a ∈ A0
A× B binary product
A→ B space of maps
A+ B binary coproduct
x : A ⊢ B(x) fibration B→ A with fibers B(x)
∑

x:A B(x) total space of fibration B→ A
∏

x:A B(x) space of sections of fibration B→ A
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Contractible types

Definition
The type A is contractible if we can construct a term of type

isContr(A) :≡
∑

x:A

∏

y:A
y⇝ x

A contractible type. . .
• is also called singleton type.
• has a point and a path from any point to that point.

By path inversion and concatenation, there is a path between any
two points of a contractible type.



Equivalences

Definition
A map f : A→ B is an equivalence if it has contractible fibers, i.e.,

isequiv(f) :≡
∏

b:B

isContr

�

∑

a:A
f(a)⇝ b

�

The type of equivalences:

A≃ B :≡
∑

f :A→B

isequiv(f)

Exercise: Given an equivalence f : A≃ B, define a function
g : B→ A. Construct paths f(g(y))⇝ y and g(f(x))⇝ x.



Exercises

• Show that 1 is contractible.

• Let A be a contractible type. Construct an equivalence A≃ 1.

• Given types A and B, let f : A→ B and g : B→ A. Suppose
having families of paths ηx : g(f(x))⇝ x and εy : f(g(y))⇝ y.
Show that f is an equivalence.



Path types of pairs

Exercise: construct equivalences
• for (a,b) : A× B,
�

(a,b)⇝ (a′,b′)
�

≃
�

(a⇝ a′)× (b⇝ b′)
�

• for (a,b) :
∑

a:A B(a),
�

(a,b)⇝ (a′,b′)
�

≃
∑

p:a⇝a′
transportB(p,b)⇝ b′



Path types of function spaces
For f ,g : A→ B cannot show

�

f ⇝ g
�

≃
�∏

a:A
f(a)⇝ g(a)
�

Exercise: Define

toPointwisePath :
∏

f ,g:A→B

�

f ⇝ g
�

→
�∏

a:A
f(a)⇝ g(a)
�

Axiom (function extensionality)

toPointwisePath(f ,g) :
�

f ⇝ g
�

→
�∏

a:A
f(a)⇝ g(a)
�

is an equivalence for any f ,g.

Exercise: define toPointwisePath for Π-types.



Path types of identity types

We cannot show the following:

Axiom (uniqueness of identity proofs)
∏

a,b:A

∏

p,q:a⇝b

p⇝ q.



Path types of the universe

Exercise: Define

idtoequiv :
∏

A,B:Type

(A⇝ B)→ (A≃ B)

We cannot show the following:

Axiom (univalence)

idtoequiv(A,B) : (A⇝ B)→ (A≃ B)

is an equivalence.



Characterization of path types

• Σ-types: provable characterization
• Π-types: axiom of function extensionality
• Id-types: axiom of uniqueness of identity proofs
• Type: axiom of univalence

• FE is consistent with both UIP and U. (Actually U→ FE.)
• UIP and U are inconsistent.
• Type theory + UIP + FE has a logical interpretation and a set

interpretation.
• Type theory + U has a space interpretation.

We choose type theory + U (univalent foundations), and recover
logic and set theory from certain types that we call propositions and
sets.
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Some types are propositions

Curry-Howard
• Types are propositions.
• Terms are proofs.

Univalent logic
• Some types are propositions.
• Terms of those types are proofs.

Definition (Propositions in univalent type theory)
Type A is a proposition if

isProp(A) :≡
∏

x,y:A
x⇝ y

is inhabited.



Examples of propositions

Exercise: show that
• 1 is a proposition.
• any contractible type is a proposition.
• 0 is a proposition.
• if A and B are propositions, then A× B is a proposition.
• if B is a proposition, then A→ B is a proposition.



Connectives in univalent logic

Definition

Prop :≡
∑

X:Type

isProp(X)

We want logical connectives

⊤,⊥ : Prop
∨,∧,⇒ : Prop→ Prop→ Prop

¬ : Prop→ Prop
∀X ,∃X : (X→ Prop)→ Prop (binding a variable)



Univalent logic
• 1 and 0 are propositions. Hence

⊤ :≡ 1 ⊥ :≡ 0

• If A and B are propositions, so is A× B. Hence

A∧ B :≡ A× B

• If B is a proposition, so is A→ B. Hence

A⇒ B :≡ A→ B

• 0 is a proposition, hence A→ 0 is. Hence

¬A :≡ A→ 0

• If B(a) (for any a) are propositions, so is
∏

a:A B(a). Hence

∀(a : A),B(a) :≡
∏

a:A
B(a)



∨ and ∃ in univalent logic

• Exercise: Find a type T that is a proposition such that T + T is
not a proposition.
Conclusion: can not set

A∨ B :≡ A+ B

• Σn:NatisEven(n) is the type of all even natural numbers. It is
not a proposition.
Conclusion: can not set

∃(a : A),B(a) :≡ Σa:AB(a)

Solution: introduce a type former that makes propositions.



Propositional truncation

Formation If A is a type, then ||A|| is a type

Introduction If a : A, then a : ||A||

p(A) :
∏

x,y:||A||

x⇝ y

Elimination If f : A→ B and B is a proposition, then f : ||A|| → B

Computation f(a)≡ f(a)

• p(A) turns ||A|| into a proposition.
• Intuitively, ||A|| is empty if A is, and contractible if A has at

least one element.



∨ and ∃ in univalent logic

•
A∨ B :≡ ||A+ B||

•
∃(a : A),B(a) :≡ ||Σa:AB(a)||

For example:

isSurjective(f) :≡
∏

b:B

||Σa:Af(a)⇝ b||



Propositional extensionality
We would like to consider two propositions to be equal if they are
logically equivalent:

∏

P,Q:Prop

(P⇝ Q)≃ (P↔ Q)

Axiom: propositional extensionality
Exercise: state the axiom of propositional extensionality, e.g.,
analogously to function extensionality.

Exercise
Given f : A→ B, show that isequiv(f) is a proposition.

Exercise
Show that propositional extensionality follows from univalence.
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Contractible types, propositions and sets

• A is contractible if we can construct a term of type

isContr(A) :≡
∑

x:A

∏

y:A
y⇝ x

• A is a proposition if
∏

x,y:A x⇝ y is inhabited

isProp(A) :≡
∏

x,y:A
x⇝ y

• A is a set if, for any x,y : A, the type x⇝ y is a proposition

isSet(A) :≡
∏

x,y:A
isProp(x⇝ y)



Contractible types, propositions and sets

• A is contractible if we can construct a term of type

isContr(A) :≡
∑

x:A

∏

y:A
y⇝ x

• A is a proposition if
∏

x,y:A isContr(x⇝ y) is inhabited

isProp(A) :≡
∏

x,y:A
isContr(x⇝ y)

• A is a set if, for any x,y : A, the type x⇝ y is a proposition

isSet(A) :≡
∏

x,y:A
isProp(x⇝ y)



Exercises

• For a type A, show that
∏

x,y:A isContr(x⇝ y)↔
∏

x,y:A x⇝ y.
• Show that Bool is a set. Is it contractible? Is it a proposition?
• Show that Nat is a set. Is it contractible? Is it a proposition?



Homotopy level of a type

Definition

isofhlevel : Nat→ Type→ Type
isofhlevel(0)(X) :≡ isContr(X)

isofhlevel(S(n))(X) :≡
∏

x,y:X
isofhlevel(n)(x⇝ y)

Exercise: Show that isofhlevel(n)(X) is a proposition.



Homotopy level of a type

Definition

isofhlevel : Nat→ Type→ Prop
isofhlevel(0)(X) :≡ isContr(X)

isofhlevel(S(n))(X) :≡
∏

x,y:X
isofhlevel(n)(x⇝ y)

Exercise: Show that isofhlevel(n)(X) is a proposition.



Preservation of levels

. . . by type constructors
• If A and B are of level n, then so is A× B.
• If B is of level n, then so is A→ B.

• If A and B(a) (for any a : A) are of level n, then so is
∑

a:A B(a).
• If B(a) (for any a : A) are of level n, then so is

∏

a:A B(a).

. . . under equivalence of types
If A is of level n and A≃ B then B is of level n.

Cumulativity
If type A is of h-level n, then it is also of h-level S(n).



Set extensionality

We would like to consider two sets to be equal if they are in
bijection:

∏

S,T:Set

(S⇝ T)≃ (S∼= T)

Axiom: set extensionality
Exercise: state the axiom of set extensionality, e.g., analogously to
propositional extensionality.

Exercise
Show that set extensionality follows from univalence.
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Summary: Univalent Foundations

• Univalent type theory with an interpretation in spaces
(precisely: Kan complexes)

Type theory Interpretation

A type space A

a : A (term a of type A) point a in space A

f : A→ B map from A to B

p : a⇝ b path (1-morphism) from a to b in A

α : p⇝a⇝b q homotopy from p to q in A

• “World” of logic (propositions and proofs) given by Prop

• “World” of sets given by Set
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