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What is Coq?

• Coq is:

1. a programming language;

2. a proof assistant.


• In other words: Coq allows to write programs that build 
mathematical entities and formal proofs.



The rest of the School

This lecture!

UniMath  Coq  Ind  UA= − +
UniMath is a library for Univalent Mathematics.


UniMath has been developed on the proof assistant Coq, 
but it uses a slightly different type theory.


Principal differences between plain Coq and UniMath (more 
will be said later):


‣ Certain features of Coq are rejected/not used 
(e.g, General (Co)Inductive Datatypes and other things).


‣ The Voevodsky’s Axiom of Univalence (UA) is assumed.



Coq vs UniMath
UniMath is a library for Univalent Mathematics. 
UniMath has been developed on top of the proof assistant Coq.


Roughly speaking, from the point-of-view of the logical systems:





𝖢𝗈𝗊 = Dependent Type Theory
+ Calculus of Constructions
+ (Co)Inductive constructions
+ …

𝖴𝗇𝗂𝖬𝖺𝗍𝗁 = Coq
− Calculus of Constructions
− (Co)Inductive constructions
+ A basic collection of datatypes (𝒰, ℕ, 𝖻𝗈𝗈𝗅, Π, Σ, 𝖨𝖽, …)
+ Univalence Axiom

…



Coq as a 
programming language



Your first program in Coq

Definition addtwo : nat -> nat := 

  λ n, n + 2. 

This program takes a natural number  and returns .  n n + 2

Type of 
the program

Name of 
the program

Body of 
the program



Running a program
Coq source:


Definition addtwo : nat -> nat := 
  λ n, n + 2. 
 
Eval compute in (addtwo 3). 

Output:


5 : nat



Using the terminology of Type Theory (see first lecture):


• Programs are called terms.

Use


Definition ident : type := tm 

to bind the term tm to the constant ident.


• Running programs is called evaluation or normalization. 
Use the command


Eval compute in tm. 

to normalize the term tm.

Terminology



Syntactic sugar 
for function definitions

• Functions are denoted using λ-abstraction:


Definition addtwo : nat -> nat := 
  λ n, n + 2. 

• The λ-abstraction can be made implicit


Definition addtwo (n : nat) : nat := 
  n + 2. 

• The two above snippets of code are equivalent.



Types



Basic examples of types
Type Inhabitants Description

nat 0, 1, 2, … Natural numbers

bool true, false Booleans

unit tt Singleton

empty Empty type

dirprod A B (x ,, y) Direct product (Cartesian product)

coprod A B ii1 a, ii2 b Coproduct (disjoint union)

A -> B fun var : ty => body Function type

UU nat, bool, A -> B, … Universe (the type of types)



Every term has an (univocally) associated type.


Examples:


‣ (1 + 0) : nat 

‣ true : bool 

‣ (fun x:nat => x + 2) : nat -> nat 

Coq command Check

Use the command 
       Check tm. 
to print the type of term tm.

Terms and Types



Command:

Check (2 + 2). 

Output:

: nat 

Command:

Check true. 

Output:

: bool 

Command:

Check nat. 

Output:

: UU

Examples



Notations



Special notations 
Often two (or more) notations are available for certain mathematical expressions.


Examples:


Addition of natural numbers:

‣ add m n          (basic syntax) 
‣ m + n            (alternative syntax) 

Coproduct (disjoint sum) of types:

‣ coprod A B       (basic syntax) 
‣ A  B            (alternative syntax) 

Lambda expressions:

‣ fun var => body   (basic syntax) 
‣ λ var, body       (alternative syntax)

⨿



Frequently used notations
Basic syntax Alt syntax How to type Description

add m n m + n + Addition.

mul m n m * n * Multiplication.

paths x y x = y  = Id-type (equality)

tpair x y (x ,, y) ,, Pair

dirprod A B A × B \times Direct product (Cartesian product)

coprod A B A ⨿ B \amalg Coproduct (Disjoint union)

fun v => b λ x, b \lambda Lambda abstraction

A -> B A → B \to Function type

empty ∅ \emptyset Empty type



-types and -typesΠ Σ



Syntax for - and -typesΠ Σ
Given a type A and a type family 

                                   B : A -> UU 

we have (see Lecture 1) the types  and ∏
a:A

B(a) ∑
a:A

B(a)

Basic 
syntax

Alternate 
syntax

How to 
type Description

forall (a:A), B a Π (a:A), B a \prod Dependent function type

total2 (λ (a: A), B a) Σ (a:A), B a \sum Dependent pair type



-typesΠ

Example: identity function  for all types 





Definition in Coq:


Definition idfun : Π A : UU, A → A := 
    λ (A : UU) (a : A), a.

A → A A

𝚒𝚍𝚏𝚞𝚗 : ∏
A:𝚄𝚄

(A → A)



Functions with 
implicit arguments

In function application, certain arguments can be deduced by 
the context.


Example: Consider


idfun nat 3 

the first argument (nat) can be deduced by the second one 
(3).


Arguments of a function can be declared implict using braces:


Definition idfun {A : UU} (a : A) : A := a.

In mathematical notation Iℕ(3)



Interacting with Coq



Our environment

• We will use Visual Studio Code or Codium to edit Coq 
scripts and to interact with Coq.


• Other options are available:


- Emacs with Proof General


- CoqIDE


• Contact us if you have problems setting up the 
environment on your computer.



Interacting with 
Coq in VScode



Interacting with 
Coq in VScode

Coq script Proof context

Query outputExplorer



Running Coq queries
Command Linux & Win Mac Output

Check Ctrl-Alt-C ⌃ ⌘ C The type of a term

Print Ctrl-Alt-P ⌃ ⌘ P The definition of a constant

About Ctrl-Alt-A ⌃ ⌘ A Various information on an object 
(e.g. implicit arguments),

Locate Ctrl-Alt-L ⌃ ⌘ L Fully qualified name 
of an object or a special notation.


