Fundamentals of Coq

Niels van der Weide – Radboud University, Nijmegen, The Netherlands School on Univalent Mathematics Minneapolis, July 2024

What is Coq?

- Coq is:
 - 1. a programming language;
 - 2. a proof assistant.
- In other words: Coq allows to write programs that build mathematical entities and formal proofs.

UniMath is a **library** for Univalent Mathematics.

UniMath has been developed on the proof assistant Coq, but it uses a slightly different type theory.

Principal **differences** between plain Coq and UniMath (more will be said later):

- Certain features of Coq are rejected/not used (e.g, General (Co)Inductive Datatypes and other things).
- The Voevodsky's Axiom of Univalence (UA) is assumed.

Coq vs UniMath

UniMath is a library for Univalent Mathematics. UniMath has been developed on top of the proof assistant Coq.

Roughly speaking, from the point-of-view of the logical systems:

Coq = Dependent Type Theory

- + Calculus of Constructions
- + (Co)Inductive constructions

+ ...

. . .

UniMath = Coq

- Calculus of Constructions
- (Co)Inductive constructions
- + A basic collection of datatypes ($\mathcal{U}, \mathbb{N}, \text{bool}, \Pi, \Sigma, \text{Id}, \ldots$)
- + Univalence Axiom

Coq as a programming language

Your first program in Coq

This *program* takes a natural number n and returns n + 2.

Running a program

Coq source:

Definition addtwo : nat -> nat := λ n, n + 2.

Eval compute in (addtwo 3).

Output:

5 : nat

Terminology

Using the terminology of Type Theory (see first lecture):

• *Programs* are called *terms*.

Use

Definition *ident* : *type* := *tm*

to bind the term *tm* to the constant *ident*.

• Running programs is called evaluation or normalization.

Use the command

Eval compute in <u>tm</u>.

to normalize the term *tm*.

Syntactic sugar for function definitions

• Functions are denoted using λ -abstraction:

Definition addtwo : nat -> nat := λ n, n + 2.

• The λ -abstraction can be made implicit

Definition addtwo (n : nat) : nat :=
 n + 2.

• The two above snippets of code are equivalent.

Basic examples of types

Туре	Inhabitants	Description
nat	0, 1, 2,	Natural numbers
bool	true, false	Booleans
unit	tt	Singleton
empty		Empty type
dirprod A B	(x ,, y)	Direct product (Cartesian product)
coprod A B	ii1 a,ii2 b	Coproduct (disjoint union)
A -> B	fun <u>var</u> : <u>ty</u> => <u>body</u>	Function type
UU	nat,bool,A -> B,	Universe (the type of types)

Terms and Types

Every term has an (univocally) associated type.

Examples:

- ▶ (1 + 0) : nat
- true : bool
- ▶ (fun x:nat => x + 2) : nat -> nat

Coq command Check

Use the command

Check tm.

to print the type of term <u>tm</u>.

Examples

Command:			
	Check (2 + 2).		
Output:			
	: nat		
Comman	d:		
	Check true.		
Output:			
	: bool		
Command:			
	Check nat.		
Output:			
	: UU		

Notations

Special notations

Often two (or more) notations are available for certain mathematical expressions.

Examples:

Addition of natural numbers:

- add m n (basic syntax)
- m + n (alternative syntax)

Coproduct (disjoint sum) of types:

- coprod A B (basic syntax)
- ► A ∐ B (alternative syntax)

Lambda expressions:

- ▶ fun <u>var</u> => <u>body</u> (basic syntax)
- $\blacktriangleright \lambda \underline{var}, \underline{body} \qquad (alternative syntax)$

Frequently used notations

Basic syntax	Alt syntax	How to type	Description
add m n	m + n	+	Addition.
mul m n	m * n	*	Multiplication.
paths x y	x = y	=	Id-type (equality)
tpair x y	(x ,, y)	, ,	Pair
dirprod A B	A × B	\times	Direct product (Cartesian product)
coprod A B	A ⊔ B	\amalg	Coproduct (Disjoint union)
fun v => b	λx, b	∖lambda	Lambda abstraction
A -> B	A → B	\to	Function type
empty	Ø	\emptyset	Empty type

Π -types and Σ -types

Syntax for $\Pi\text{-}$ and $\Sigma\text{-}types$

Given a type A and a type family

B : A -> UU

we have (see Lecture 1) the types $\prod_{a:A} B(a)$ and $\sum_{a:A} B(a)$

Basic syntax	Alternate syntax	How to type	Description
forall (a:A), B a	П (а:А), В а	\prod	Dependent function type
total2 (λ (a: A), B a)	Σ (a:A), B a	\sum	Dependent pair type

Π-types

Example: identity function $A \rightarrow A$ for all types A

$$\texttt{idfun}: \prod_{A:\texttt{UU}} (A \to A)$$

Definition in Coq:

Definition idfun : $\Pi A : UU, A \rightarrow A := \lambda (A : UU) (a : A), a.$

Functions with implicit arguments

In function application, certain arguments can be deduced by the context.

Example: Consider

In mathematical notation $I_{\mathbb{N}}(3)$

idfun nat 3 🛹

the first argument (nat) can be deduced by the second one (3).

Arguments of a function can be declared implict using braces:

Definition idfun {A : UU} (a : A) : A := a.

Interacting with Coq

Our environment

- We will use Visual Studio Code or Codium to edit Coq scripts and to interact with Coq.
- Other options are available:
 - Emacs with Proof General
 - CoqIDE
- Contact us if you have problems setting up the environment on your computer.

Interacting with Coq in VScode

		fundamentals_lecture.v — Part2_Fundamentals_Coq	08
Ch	EXPLORER ····	\equiv fundamentals_lecture.v \times \square \cdots \equiv ProofView: fundamentals_lecture.v	•••
	\sim open editors		
	GROUP 1 $\times \equiv$ fundamentals 1	<pre>1 (* ===================================</pre>	_
9 o	GROUP 2	<pre>3 (* Marco Maggesi (University of Florence, Italy) 4 (* ===================================</pre>	
_⊂ œ	→ PART2 [] [] [] [] [] []	5 6 Require Export UniMath.Foundations.All. 7	
	 ✓ .vscode Scoq_exercises.aux 	8 Check nat. 9	
	 .coq_solutions.aux D .CoqMakefile.d .fundamentals lectu 	<pre>10 Lemma my_lemma : 2 + 2 = 4. 11 Proof. 12 apply idpath.</pre>	
••••	<pre></pre>	13 Qed. 14	
	<pre>= coq_solutions.v</pre>	15 (* 16 (* What is Coq?	
	coq_solutions.vo coq_solutions.vok		
8	Ξ coq_solutions.vos Ξ fundamentals lectur	PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL Notices	X
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> OUTLINE > TIMELINE	i UU	-
><	⊗ 0 ⚠ 0 Ready	Ln 14, Col 1 Spaces: 2 UTF-8 LF Coq 🔗	Д,

# Interacting with Coq in VScode



### **Running Coq queries**

Command	Linux & Win	Mac	Output
Check	Ctrl-Alt-C	^	The type of a term
Print	Ctrl-Alt-P	^	The definition of a constant
About	Ctrl-Alt-A	^	Various information on an object (e.g. implicit arguments),
Locate	Ctrl-Alt-L	^	Fully qualified name of an object or a special notation.