
Fundamentals of Coq
Niels van der Weide — Radboud University, Nijmegen, The Netherlands

School on Univalent Mathematics

Minneapolis, July 2024

What is Coq?

• Coq is:

1. a programming language;

2. a proof assistant.

• In other words: Coq allows to write programs that build
mathematical entities and formal proofs.

The rest of the School

This lecture!

UniMath Coq Ind UA= − +
UniMath is a library for Univalent Mathematics.

UniMath has been developed on the proof assistant Coq,
but it uses a slightly different type theory.

Principal differences between plain Coq and UniMath (more
will be said later):

‣ Certain features of Coq are rejected/not used 
(e.g, General (Co)Inductive Datatypes and other things).

‣ The Voevodsky’s Axiom of Univalence (UA) is assumed.

Coq vs UniMath
UniMath is a library for Univalent Mathematics. 
UniMath has been developed on top of the proof assistant Coq.

Roughly speaking, from the point-of-view of the logical systems:

𝖢𝗈𝗊 = Dependent Type Theory
+ Calculus of Constructions
+ (Co)Inductive constructions
+ …

𝖴𝗇𝗂𝖬𝖺𝗍𝗁 = Coq
− Calculus of Constructions
− (Co)Inductive constructions
+ A basic collection of datatypes (𝒰, ℕ, 𝖻𝗈𝗈𝗅, Π, Σ, 𝖨𝖽, …)
+ Univalence Axiom

…

Coq as a
programming language

Your first program in Coq

Definition addtwo : nat -> nat :=

 λ n, n + 2.

This program takes a natural number and returns . n n + 2

Type of
the program

Name of 
the program

Body of 
the program

Running a program
Coq source:

Definition addtwo : nat -> nat :=
 λ n, n + 2.

Eval compute in (addtwo 3).

Output:

5 : nat

Using the terminology of Type Theory (see first lecture):

• Programs are called terms.

Use

Definition ident : type := tm

to bind the term tm to the constant ident.

• Running programs is called evaluation or normalization.
Use the command

Eval compute in tm.

to normalize the term tm.

Terminology

Syntactic sugar
for function definitions

• Functions are denoted using λ-abstraction:

Definition addtwo : nat -> nat :=
 λ n, n + 2.

• The λ-abstraction can be made implicit

Definition addtwo (n : nat) : nat :=
 n + 2.

• The two above snippets of code are equivalent.

Types

Basic examples of types
Type Inhabitants Description

nat 0, 1, 2, … Natural numbers

bool true, false Booleans

unit tt Singleton

empty Empty type

dirprod A B (x ,, y) Direct product (Cartesian product)

coprod A B ii1 a, ii2 b Coproduct (disjoint union)

A -> B fun var : ty => body Function type

UU nat, bool, A -> B, … Universe (the type of types)

Every term has an (univocally) associated type.

Examples:

‣ (1 + 0) : nat

‣ true : bool

‣ (fun x:nat => x + 2) : nat -> nat

Coq command Check

Use the command 
 Check tm. 
to print the type of term tm.

Terms and Types

Command:

Check (2 + 2).

Output:

: nat

Command:

Check true.

Output:

: bool

Command:

Check nat.

Output:

: UU

Examples

Notations

Special notations
Often two (or more) notations are available for certain mathematical expressions.

Examples:

Addition of natural numbers:

‣ add m n (basic syntax)
‣ m + n (alternative syntax)

Coproduct (disjoint sum) of types:

‣ coprod A B (basic syntax)
‣ A B (alternative syntax)

Lambda expressions:

‣ fun var => body (basic syntax)
‣ λ var, body (alternative syntax)

⨿

Frequently used notations
Basic syntax Alt syntax How to type Description

add m n m + n + Addition.

mul m n m * n * Multiplication.

paths x y x = y = Id-type (equality)

tpair x y (x ,, y) ,, Pair

dirprod A B A × B \times Direct product (Cartesian product)

coprod A B A ⨿ B \amalg Coproduct (Disjoint union)

fun v => b λ x, b \lambda Lambda abstraction

A -> B A → B \to Function type

empty ∅ \emptyset Empty type

-types and -typesΠ Σ

Syntax for - and -typesΠ Σ
Given a type A and a type family 

 B : A -> UU

we have (see Lecture 1) the types and ∏
a:A

B(a) ∑
a:A

B(a)

Basic
syntax

Alternate
syntax

How to
type Description

forall (a:A), B a Π (a:A), B a \prod Dependent function type

total2 (λ (a: A), B a) Σ (a:A), B a \sum Dependent pair type

-typesΠ

Example: identity function for all types

Definition in Coq:

Definition idfun : Π A : UU, A → A := 
 λ (A : UU) (a : A), a.

A → A A

𝚒𝚍𝚏𝚞𝚗 : ∏
A:𝚄𝚄

(A → A)

Functions with
implicit arguments

In function application, certain arguments can be deduced by
the context.

Example: Consider

idfun nat 3

the first argument (nat) can be deduced by the second one
(3).

Arguments of a function can be declared implict using braces:

Definition idfun {A : UU} (a : A) : A := a.

In mathematical notation Iℕ(3)

Interacting with Coq

Our environment

• We will use Visual Studio Code or Codium to edit Coq
scripts and to interact with Coq.

• Other options are available:

- Emacs with Proof General

- CoqIDE

• Contact us if you have problems setting up the
environment on your computer.

Interacting with
Coq in VScode

Interacting with
Coq in VScode

Coq script Proof context

Query outputExplorer

Running Coq queries
Command Linux & Win Mac Output

Check Ctrl-Alt-C ⌃ ⌘ C The type of a term

Print Ctrl-Alt-P ⌃ ⌘ P The definition of a constant

About Ctrl-Alt-A ⌃ ⌘ A Various information on an object 
(e.g. implicit arguments),

Locate Ctrl-Alt-L ⌃ ⌘ L Fully qualified name 
of an object or a special notation.

