Univalent Foundations

I. Type theory

Paige Randall North (slides from Benedikt Ahrens)

What is a foundation of mathematics?

A foundation of mathematics is specified by three things:

- 1. Syntax for mathematical objects
- 2. Notion of proposition and proof
- 3. Interpretation of the syntax into the world of mathematical objects

In this course, we discuss several foundations:

- Martin-Löf type theory with an interpretation in sets
- Martin-Löf type theory with an interpretation in propositions
- Univalent type theory with an interpretation in simplicial sets (Univalent Foundations)

Outline

1 The syntax of type theory and an interpretation in sets

2 An interpretation of type theory in propositions

Outline

1 The syntax of type theory and an interpretation in sets

2 An interpretation of type theory in propositions

Type theory

Type theory is...

- A (functional programming) language of types and terms, similar to functional programming languages
- with the infrastructure for writing mathematical statements and proofs

Important features of Martin-Löf type theory

 Dependent types and functions, e.g., type Vect(n) of vectors of length n:

concatenate :
$$\prod_{m,n: \mathsf{Nat}} \mathsf{Vect}(m) \to \mathsf{Vect}(n) \to \mathsf{Vect}(m+n)$$

tail:
$$\prod_{n:Nat} Vect(1+n) \rightarrow Vect(n)$$

All functions are total

Our goal

Our main goal: to write well-typed programs

In type theory, both the activities of

- implementing an algorithm
- proving a mathematical statement

are done by writing well-typed programs.

We hence need to understand the **typing rules** of type theory. These rules are expressed in a logical language consisting of "judgements" and "inference rules".

Syntax of type theory

Fundamental: judgment

context ⊢ conclusion

sequence of variable declarations
$(x_1:A_1),(x_2:A_2(x_1)),\ldots,(x_n:A_n(\vec{x}_i))$
A is well–formed type in context Γ
term a is well-formed and of type A
types A and B are convertible
a is convertible to b in type A

$$(x : \mathsf{Nat}), (f : \mathsf{Nat} \to \mathsf{Bool}) \vdash f(x) : \mathsf{Bool}$$

An example

Suppose you want to write a function is Zero? of type Nat \rightarrow Bool. You start out with

isZero? : Nat
$$\rightarrow$$
 Bool isZero?(n) : \equiv ??

At this point, you need to write a term b(n) such that

$$(n : Nat) \vdash b(n) : Bool$$

Inference rules and derivations

• An **inference rule** is an implication of judgments,

e.g.,
$$\frac{J_1 \qquad J_2 \qquad \dots}{J}$$
 e.g.,
$$\frac{\Gamma \vdash f : \mathsf{Nat} \to \mathsf{Bool} \qquad \Gamma \vdash n : \mathsf{Nat}}{\Gamma \vdash f@n : \mathsf{Bool}} \qquad \frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

A derivation of a judgment is a tree of inference rules.
 e.g., writing Γ for the context (f: Nat → Bool), (n: Nat)

$$\frac{\Gamma \vdash f : \mathsf{Nat} \to \mathsf{Bool} \qquad \Gamma \vdash n : \mathsf{Nat}}{\Gamma \vdash f(n) : \mathsf{Bool}}$$

- We sometimes omit the context when writing judgments.
- We abbreviate the above to, e.g., "If $a \equiv b$, then $b \equiv a$ ".

Interpreting types as sets?

- Can interpret types and terms as sets
- a : A is interpreted as $\lfloor a \rfloor \in \lfloor A \rfloor$

Differences between a:A and $a \in A$

- the judgment a: A is not a statement that can be proved or disproved within type theory
- term a does not exist independently of its type A
- a well-formed term a has exactly one type up to \equiv , whereas a set a can be member of many different sets

Important facts about convertibility

- If x : A and $A \equiv B$ then x : B
- \equiv is a congruence, e.g., if $a \equiv a'$ then $f@a \equiv f@a'$

Declaring types & terms

Any type and its terms are declared by giving 4 (groups of) rules:

Formation a way to construct a new type

Introduction way(s) to construct **canonical terms** of that type

Elimination how to use a term of the new type to construct terms of other types

Computation what happens when one does Introduction followed by Elimination

The type of functions $A \rightarrow B$

Formation If A and B are types, then $A \rightarrow B$ is a type

Introduction If
$$(x:A) \vdash b:B$$
, then $\vdash \lambda(x:A).b(x):A \rightarrow B$

Elimination If $f: A \rightarrow B$ and a: A, then f@a: B

Computation $(\lambda(x:A).b)@a \equiv b[a/x]$

- **Substitution** b[a/x] is built-in
- Notational convention: write f(a) for f@a beware of potential confusion
- Interpretation in sets: Set of functions from *A* to *B*

The singleton type

Formation 1 is a type

Introduction t:1

Elimination If x : 1 and C is a type and c : C, then $rec_1(C, c, x) : C$

Computation $rec_1(C, c, t) \equiv c$

• Interpretation in sets: a one-element set, $t \in \mathbb{1}$

Booleans

Formation

Introduction

Elimination

Computation

Booleans

Formation Bool is a type

Introduction true: Bool, false: Bool

Elimination If x: Bool and C is a type and c, c': C, then $rec_{Bool}(C, c, c', x)$: C

Computation
$$rec_{Bool}(C, c, c', true) \equiv c$$

 $rec_{Bool}(C, c, c', false) \equiv c'$

• Interpretation in sets a two-element set

The empty type

Formation 0 is a type

Introduction

Elimination If x : 0 and C is a type, then $rec_0(C, x) : C$

Computation

Exercise

Define a function of type $0 \rightarrow Bool$.

• Interpretation in sets: the empty set

The type of natural numbers

Formation Nat is a type

Introduction o: Nat

If n: Nat, then S(n): Nat

Elimination If C is a type and $c_o: C$ and $c_s: C \to C$ and x: Nat then $rec_{N-1}(C, c_o, c_s, x): C$

Computation
$$\operatorname{rec}_{\mathsf{Nat}}(C, c_{\mathsf{o}}, c_{\mathsf{s}}, \mathsf{o}) \equiv c_{\mathsf{o}}$$

 $\operatorname{rec}_{\mathsf{Nat}}(C, c_{\mathsf{o}}, c_{\mathsf{s}}, S(n)) \equiv c_{\mathsf{s}} @(\operatorname{rec}_{\mathsf{Nat}}(C, c_{\mathsf{o}}, c_{\mathsf{s}}, n))$

• Interpretation in sets: the set of natural numbers

Pattern matching

Exercise

Define a function isZero? : Nat → Bool

Pattern matching

Exercise

Define a function is Zero? : Nat \rightarrow Bool

Solution

isZero? := $\lambda(x : Nat).rec_{Nat}(Bool, true, \lambda(x : Bool).false, x)$

Pattern matching

Exercise

Define a function isZero? : Nat → Bool

Solution

isZero? := $\lambda(x : Nat).rec_{Nat}(Bool, true, \lambda(x : Bool).false, x)$

- Programming in terms of the eliminators rec is cumbersome.
- Equivalently, we can specify functions by pattern matching:
 A function A → C is specified completely if it is specified on the canoncial elements of A.

isZero?: Nat
$$\rightarrow$$
 Bool isZero?(o) : \equiv true isZero?($S(n)$) : \equiv false

• The "specifying equations" correspond to the computation rules.

Pattern matching for 0, 1

Exercise

Define $f: 0 \rightarrow A$.

Solution

Nothing to do.

Pattern matching for 0, 1

Exercise

Define $f: 0 \rightarrow A$.

Solution

Nothing to do.

Exercise

Define $f: 1 \rightarrow A$.

Solution

 $f(t) :\equiv ?? : A$

Pattern matching for Bool

Exercise

Define $f : Bool \rightarrow A$.

Solution

```
f(\mathsf{true}) :\equiv ?? : A
```

 $f(\mathsf{false}) :\equiv ?? : A$

The type of pairs $A \times B$

Formation If A and B are types, then $A \times B$ is a type

Introduction If a : A and b : B, then pair $(a, b) : A \times B$

Elimination If *C* is a type, and $p: A \rightarrow (B \rightarrow C)$ and $t: A \times B$, then $rec_{\times}(A, B, C, p, t): C$

Computation $rec_{\times}(A, B, C, p, pair(a, b)) \equiv p@a@b$

- Interpretation in sets: Cartesian product of sets *A* and *B*
- Notational convention: write (a,b) instead of pair(a,b)

Exercises

Exercise

Define fst : $A \times B \rightarrow A$ and snd : $A \times B \rightarrow B$

Exercise

Compute fst(pair(a,b)) and snd(pair(a,b))

Exercises

Exercise

Given types *A* and *B*, write a function swap of type $A \times B \rightarrow B \times A$.

Exercise

What is the type of swap@pair(t, false)? Compute the result.

Associativity of cartesian product

Exercise

Write a function assoc of type $(A \times B) \times C \rightarrow A \times (B \times C)$.

Type dependency

In particular: dependent type *B* over *A*

$$x:A \vdash B(x)$$

"family *B* of types indexed by *A*"

- A type can depend on several variables
- Example: type of vectors (with entries from, e.g., Nat) of length n

$$n: \mathsf{Nat} \; \vdash \; \mathsf{Vect}(n)$$

Dependent types in pictures

Universes

Universes

- There is also a type Type. Its elements are types, e.g. *A* : Type.
- The dependent type x : A ⊢ B can be considered as a function

$$\lambda x.B:A\to\mathsf{Type}$$

What is the type of Type?

- Actually, hierarchy $(\mathsf{Type}_i)_{i \in I}$ to avoid paradoxes.
- But we ignore this for the most part, and only write Type.

$$(n : Nat), (A : Type) \vdash Vect(A, n) : Type$$

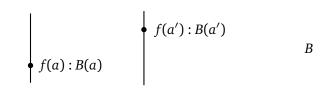
The type of dependent functions $\prod_{x:A} B$

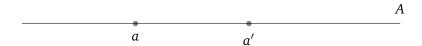
Formation If
$$x:A \vdash B$$
, then $\prod_{x:A} B(x)$ is a type Introduction If $(x:A) \vdash b:B$, then $\lambda(x:A).b:\prod_{x:A} B$ Elimination If $f:\prod_{x:A} B$ and $a:A$, then $f(a):B[x:=a]$ Computation $(\lambda(x:A).b)(a) \equiv b[x:=a]$

- The case $A \rightarrow B$ is a special case, where B does not depend on x : A
- Interpretation in sets: The product $\prod_{x:A} B$

A dependent function in pictures

$$f: \prod_{x \in A} B(x)$$





Pattern matching for 0, 1

Exercise

Specify a dependent function $f: \prod_{x:0} A(x)$.

Solution

Nothing to do.

Exercise

Specify a dependent function $f: \prod_{x:1} A(x)$.

Solution

$$f(t) :\equiv ?? : A(t)$$

Pattern matching for Bool

Exercise

Specify a dependent function $f: \prod_{x:Bool} A(x)$.

Solution

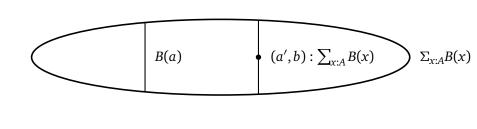
```
f(\mathsf{true}) :\equiv ?? : A(\mathsf{true})
```

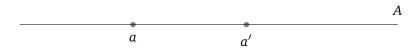
 $f(false) :\equiv ?? : A(false)$

The type of dependent pairs $\sum_{x:A} B$

- The case A × B is a special case, where B does not depend on x: A
- Interpretation in sets: The disjoint union $\coprod_{x:A} B$

Σ -type in pictures





The identity type

Formation If a:A and b:A, then $Id_A(a,b)$ is a type

Introduction If a : A, then $refl(a) : ld_A(a, a)$

Elimination If

$$(x,y:A), (p: Id_A(x,y)) \vdash C(x,y,p)$$

and
 $(x:A) \vdash t(x): C(x,x,refl(x))$
then
 $(x,y:A), (p: Id_A(x,y) \vdash ind_{Id}(t;x,y,p): C(x,y,p)$

Computation ...

Interpretation in sets

Equality a = b

Exercise

Exercise

Write a term of type $Id_A(snd(t, false), false)$. (Hint: remember the important facts about \equiv .)

The elimination principle for Id_A

- By pattern matching, to specify a map on a family of identities $Id_A(x,y)$, it suffices to specify its image on refl(x) for some x.
- For instance, to define

$$sym: \prod_{x,y:A} \mathsf{Id}(x,y) \to \mathsf{Id}(y,x)$$

it suffices to specify its image on (x, x, refl(x))

$$\mathsf{sym}(x,x,\mathsf{refl}(x)) \equiv$$

The elimination principle for Id_A

- By pattern matching, to specify a map on a family of identities $Id_A(x,y)$, it suffices to specify its image on refl(x) for some x.
- For instance, to define

$$sym: \prod_{x,y:A} \mathsf{Id}(x,y) \to \mathsf{Id}(y,x)$$

it suffices to specify its image on (x, x, refl(x))

$$\operatorname{sym}(x, x, \operatorname{refl}(x)) \equiv \operatorname{refl}(x)$$

More about identities

Exercise

Exercise: Using pattern matching, construct a term trans of type

$$\prod_{x,y:A} \mathsf{Id}(x,y) \to \prod_{z:A} \mathsf{Id}(y,z) \to \mathsf{Id}(x,z)$$

Transport

Exercise

Given $x : A \vdash B$, define a function of type

transport^B:
$$\prod_{x,y\in A} \operatorname{Id}(x,y) \to B(x) \to B(y)$$

Exercise: swap is involutive

Exercise

Given types A and B, write a function of type

$$\prod_{t:A\times B}\mathsf{Id}(\mathsf{swap}(\mathsf{swap}(t)),t)$$

The disjoint sum A + B

Formation If A and B are types, then A + B is a type

Introduction If
$$a : A$$
, then $inl(a) : A + B$
If $b : B$, then $inr(b) : A + B$

Elimination If
$$f: A \to C$$
 and $g: B \to C$, then $\operatorname{rec}_+(C, f, g): A + B \to C$

Computation
$$\operatorname{rec}_+(C, f, g)(\operatorname{inl}(a)) \equiv f(a)$$

 $\operatorname{rec}_+(C, f, g)(\operatorname{inr}(b)) \equiv g(b)$

- Interpretation in sets: disjoint union
- What is the pattern matching principle for A + B?
- Can be seen as a special case of \sum

Interpreting types as sets

Syntax	Set interpretation
\overline{A}	set A
a:A	$a \in A$
$A \times B$	cartesian product
$A \rightarrow B$	set of functions $A \rightarrow B$
A + B	disjoint union $A \coprod B$
$x:A \vdash B(x)$	family B of sets indexed by A
$\sum_{x:A} B(x)$	disjoint union $\coprod_{x:A} B(x)$
$\prod_{x:A} B(x)$	dependent function
$Id_A(a,b)$	equality $a = b$

Outline

1 The syntax of type theory and an interpretation in sets

2 An interpretation of type theory in propositions

Interpreting types as propositions

Syntax	Logic
\overline{A}	proposition A
a:A	a is a proof of A
1	Τ
0	\perp
$A \times B$	$A \wedge B$
$A \rightarrow B$	$A \Rightarrow B$
A + B	$A \lor B$
$x:A \vdash B(x)$	predicate B on A
$\sum_{x:A} B(x)$	$\exists x \in A, B(x)$
$\prod_{x:A} B(x)$	$\forall x \in A, B(x)$
$\operatorname{Id}_A(a,b)$	equality $a = b$

- The connectives ∨ and ∃ thus obtained behave constructively.
- Known as the **Curry-Howard correspondence**.

Negation

Definition

$$\neg A :\equiv A \rightarrow 0$$

Exercise

- 1. Construct a term of type $A \rightarrow \neg \neg A$
- 2. Try to construct a term of type $\neg \neg A \rightarrow A$

Summary: Logic in type theory

Curry-Howard correspondence resp. Brouwer-Heyting-Kolmogorov interpretation:

- propositions are types
- proofs of P are terms of type P

Hence

- In principle, all types could be called propositions.
- To prove a proposition *P* means to construct a term of type *P*.
- In UF, only some types are called 'propositions' (and only some types are called 'sets'), cf. later.

Convention

For type X, we also say "Show X" or "Prove X" for "Construct a term of type X".

true is not false

Exercise

Construct a term of type $\neg(Id(true, false))$.

Hint: use transport^B with a suitable $B : Bool \rightarrow Type$

Solution

Set $B :\equiv \mathsf{rec}_{\mathsf{Bool}}(\mathsf{Type}, 1, 0) : \mathsf{Bool} \to \mathsf{Type}$. Then $B(\mathsf{true}) \equiv 1$ and $B(\mathsf{false}) \equiv 0$.

 λp : Id(true, false).transport^B(p,t): Id(true, false) $\rightarrow 0$

Dependent elimination for 0, 1, Bool

```
0 If x: 0 ⊢ C(x) is a type family and x: 0, then ind<sub>1</sub>(C,x): C(x)
1 If x: 1 ⊢ C(x) is a type family and c<sub>t</sub>: C(t) and x: 1, then ind<sub>1</sub>(C,c,x): C(x)
Bool If x: Bool ⊢ C(x) is a type family and c<sub>true</sub>: C(true) and c<sub>false</sub>: C(false) and x: Bool, then ind<sub>Bool</sub>(C,c,c',x): C(x)
```