Univalent Foundations

I. Type theory

Paige Randall North (slides from Benedikt Ahrens)

1/47

What is a foundation of mathematics?

A foundation of mathematics is specified by three things:
1. Syntax for mathematical objects
2. Notion of proposition and proof

3. Interpretation of the syntax into the world of mathematical
objects

In this course, we discuss several foundations:
® Martin-Lof type theory with an interpretation in sets
® Martin-Lof type theory with an interpretation in propositions

¢ Univalent type theory with an interpretation in simplicial sets
(Univalent Foundations)

2/47

Outline

@ The syntax of type theory and an interpretation in sets

© An interpretation of type theory in propositions

3/47

Outline

@ The syntax of type theory and an interpretation in sets

4/47

Type theory
Type theory is. . .

® A (functional programming) language of types and terms,
similar to functional programming languages

¢ with the infrastructure for writing mathematical statements
and proofs

Important features of Martin-Lof type theory

® Dependent types and functions, e.g., type Vect(n) of vectors
of length n:

concatenate : l_[Vect(m) — Vect(n) — Vect(m + n)

m,n:Nat

tail : l_[Vect(1 +n) — Vect(n)

n:Nat

® All functions are total
5/47

Our goal

Our main goal: to write well-typed programs
In type theory, both the activities of
® implementing an algorithm
® proving a mathematical statement
are done by writing well-typed programs.
We hence need to understand the typing rules of type theory.

These rules are expressed in a logical language consisting of
“judgements” and “inference rules”.

6/47

Syntax of type theory

Fundamental: judgment

context F conclusion

Contexts & judgments

r sequence of variable declarations

(¢ 1AL, (6, AL (), - x5 Oy s ALRYD)
r - A A is well-formed type in context T
' - a:A term a is well-formed and of type A
' - A=B types A and B are convertible
' - a=b:A a is convertible to b in type A

(x: Nat),(f : Nat = Bool) F f(x): Bool

7/47

An example

Suppose you want to write a function isZero? of type Nat — Bool.

You start out with
isZero? : Nat — Bool
isZero?(n) := ??

At this point, you need to write a term b(n) such that

(n:Nat) + b(n): Bool

8/47

Inference rules and derivations

An inference rule is an implication of judgments,

Jy J,
J
e.g.,
I' + f:Nat— Bool I' F n:Nat ' a=b:A
I - f@n:Bool I' - b=a:A

A derivation of a judgment is a tree of inference rules.
e.g., writing T' for the context (f : Nat — Bool), (n : Nat)

I' + f:Nat— Bool I' b n:Nat
' + f(n): Bool

We sometimes omit the context when writing judgments.

We abbreviate the above to, e.g., “If a =b, then b =a”

9/47

Interpreting types as sets?

® Can interpret types and terms as sets

® a:Aisinterpreted as |a] € |A]

Differences between a : A and a € A

® the judgment a : A is not a statement that can be proved or
disproved within type theory

¢ term a does not exist independently of its type A

® a well-formed term a has exactly one type up to =, whereas a
set a can be member of many different sets

10/ 47

Important facts about convertibility

e Ifx:Aand A=Bthenx:B

® = isa congruence, e.g., if a = a’ then f@a = f@ad’

11/47

Declaring types & terms

Any type and its terms are declared by giving 4 (groups of) rules:

Formation a way to construct a new type
Introduction way(s) to construct canonical terms of that type

Elimination how to use a term of the new type to construct terms
of other types

Computation what happens when one does Introduction followed
by Elimination

12/47

The type of functions A — B

Formation If A and B are types, then A — B is a type
Introduction If (x:A) + b:B,then F A(x:A).b(x):A—B
Elimination If f:A— Banda:A, then f@a : B

Computation (A(x:A).b)@a = b[a/x]

® Substitution b[a/x] is built-in

® Notational convention: write f(a) for f@a — beware of
potential confusion

® Interpretation in sets: Set of functions from A to B

13/47

The singleton type

Formation 1 is a type
Introduction t:1
Elimination Ifx:1 and C is a type and c : C, then rec;(C,c,x) : C

Computation recq(C,c,t)=c

® Interpretation in sets: a one-element set, t €1

14/ 47

Booleans

Formation
Introduction
Elimination

Computation

15/47

Booleans

Formation Bool is a type
Introduction true : Bool, false : Bool

Elimination If x : Bool and C is a type and c,c’ : C, then
recBOOl(C’ G C/)x) :C

COmPUtation reCBool(C, ¢, C/, true) =C
reCBOO|(C': C, C/: false) = C/

® Interpretation in sets a two-element set

15/47

The empty type

Formation 0 is a type
Introduction
Elimination Ifx:0 and C is a type, then recy(C,x) : C

Computation

Exercise
Define a function of type 0 — Bool.

® Interpretation in sets: the empty set

16/47

The type of natural numbers

Formation Nat is a type

Introduction o : Nat
If n: Nat, then S(n) : Nat

Elimination If Cis a type and ¢, : C and ¢, : C — C and x : Nat
then recy,4:(C,cq,C5,X) : C

Computation recy,:(C, ¢y, ¢5,0) = ¢,
reCNat(C) Co; Cs, S(n)) = Cs@(recNat(Ca CO, Cs: n))

® Interpretation in sets: the set of natural numbers

17/47

Pattern matching

Exercise
Define a function isZero? : Nat — Bool

18/47

Pattern matching
Exercise

Define a function isZero? : Nat — Bool

Solution

isZero? := A(x : Nat).recy,(Bool, true, A(x : Bool).false, x)

18/47

Pattern matching

Exercise
Define a function isZero? : Nat — Bool

Solution

isZero? := A(x : Nat).recy,(Bool, true, A(x : Bool).false, x)
® Programming in terms of the eliminators rec is cumbersome.
® Equivalently, we can specify functions by pattern matching:

A function A — C is specified completely if it is specified on
the canoncial elements of A.

isZero? : Nat — Bool
isZero?(0) := true
isZero?(S(n)) := false

® The “specifying equations” correspond to the computation
rules. 18/47

Pattern matching for 0, 1

Exercise
Definef: 0 — A.

Solution
Nothing to do.

19/47

Exercise

Definef: 0 — A.

Solution
Nothing to do.

Exercise

Definef: 1 — A.

Solution
ft):= ??:A

Pattern matching for 0, 1

19/47

Pattern matching for Bool

Exercise

Define f : Bool — A.
Solution

f(true) := ??:A
f(false) :=

??:A

20/ 47

The type of pairs A x B

Formation If A and B are types, then A x B is a type
Introduction If a : A and b : B, then pair(a,b) : A x B

Elimination If Cis atype,andp:A — (B— C) and t:A x B, then
rec,(A,B,C,p,t): C

Computation rec, (A, B, C,p, pair(a,b)) = p@a@b

® Interpretation in sets: Cartesian product of sets A and B

® Notational convention: write (a,b) instead of pair(a,b)

21/47

Exercises

Exercise
Define fst :AxB—Aandsnd:AxB—B

Exercise
Compute fst(pair(a,b)) and snd(pair(a,b))

22/47

Exercises

Exercise
Given types A and B, write a function swap of type A x B— B X A.

Exercise
What is the type of swap@pair(t, false)? Compute the result.

23/ 47

Associativity of cartesian product

Exercise
Write a function assoc of type (A x B) x C — A x (B x C).

24/ 47

Type dependency

In particular: dependent type B over A
x:A + B(x)

“family B of types indexed by A”

® A type can depend on several variables

® Example: type of vectors (with entries from, e.g., Nat) of
length n
n:Nat F Vect(n)

25/47

Dependent types in pictures

B(a) b:B(d)

26/ 47

Universes

Universes
® There is also a type Type. Its elements are types, e.g. A : Type.

® The dependent type x : A F B can be considered as a
function
Ax.B:A — Type

What is the type of Type?
® Actually, hierarchy (Type;);; to avoid paradoxes.

® But we ignore this for the most part, and only write Type.

(n:Nat),(A: Type) F Vect(A,n): Type

27/ 47

The type of dependent functions [[, B

Formation Ifx:A + B, then[],,B(x) is a type
Introduction If (x:A) + b:B, then A(x:A).b:[[.4B
Elimination Iff:[[,.,B and a: A, then f(a) : B[x := a]

Computation (A(x :A).b)(a) =b[x:=a]

® The case A — B is a special case, where B does not depend on
xX:A

* Interpretation in sets: The product [[,., B

28/ 47

A dependent function in pictures

f: l_[m B(x)

f(@):B(a)
f(a) : B(a)

Q

29/ 47

Pattern matching for 0, 1

Exercise

Specify a dependent function f : [[.o A(x).

Solution
Nothing to do.

Exercise

Specify a dependent function f : [[,.; A(x).

Solution

f(t) ;= 2?2 :A(t)

30/47

Pattern matching for Bool

Exercise

Specify a dependent function f : [[,.go01 A()-

Solution

f(true) :=
f(false) :=

?? : A(true)
?? : A(false)

31/47

The type of dependent pairs >, , B

Formation Ifx:A + B, then), ,B(x) is a type
Introduction If a: A and b : B(a), then pair(a,b) : D ., B(x)
Elimination ...

Computation ...

® The case A x B is a special case, where B does not depend on
xX:A

* Interpretation in sets: The disjoint union [[,., B

32/47

Y.-type in pictures

B(a) ? (a/a b) : Zx'AB(x) z:x:AB(x)

33/47

The identity type
Formation If a:A and b : A, then Id,(a,b) is a type

Introduction If a : A, then refl(a) : 1d4(a, a)

Elimination If
(X,_)/ :A)a(p : IdA(x:.y)) = C(xa}’,P)
and
(x:A) F t(x):Clx,x,refl(x))
then
(6,y 1 A),(p:1da(ey) F indig(t;x,y,p) : Clx,y,p)

Computation ...
Interpretation in sets

Equalitya=b

34/47

Exercise

Exercise

Write a term of type ld,(snd(t, false), false). (Hint: remember the
important facts about =.)

35/47

The elimination principle for Id,

® By pattern matching, to specify a map on a family of identities
Id,(x,y), it suffices to specify its image on refl(x) for some x.

¢ For instance, to define

sym : l_[ld(x,y) — Id(y,x)

XA

it suffices to specify its image on (x, x, refl(x))

sym(x, x, refl(x)) =

36/47

The elimination principle for Id,

® By pattern matching, to specify a map on a family of identities
Id,(x,y), it suffices to specify its image on refl(x) for some x.

¢ For instance, to define

sym : l_[ld(x,y) — Id(y,x)

XA

it suffices to specify its image on (x, x, refl(x))

sym(x, x, refl(x)) = refl(x)

36/47

More about identities

Exercise
Exercise: Using pattern matching, construct a term trans of type

[[1deey) =] [1d0,2) - 1d(x,2)

Xy:A Z:A

37/47

Transport

Exercise
Givenx:A F B, define a function of type

transport? : l_[Id(x,y) — B(x) — B(y)

X, y:A

38/47

Exercise: swap is involutive

Exercise
Given types A and B, write a function of type

[T 1d(swap(swap(2)).©)

t:AXB

39/47

The disjoint sum A + B

Formation If A and B are types, then A + B is a type

Introduction If a : A, then inl(a) : A+ B
If b:B, then inr(b) :A+B

Elimination Iff:A— C and g: B — C, then
rec,(C,f,g):A+B—C

Computation rec,(C,f,g)(inl(a)) =f(a)
rec, (C,f,8)(inr(b)) = g(b)
® Interpretation in sets: disjoint union
® What is the pattern matching principle for A + B?

* Can be seen as a special case of)|

40/ 47

Interpreting types as sets

Syntax Set interpretation

A set A

a:A ac€eA

AXxXB cartesian product

A—B set of functions A — B

A+B disjoint union AII B

x:A F B(x) family B of sets indexed by A
> aBx) disjoint union IT,.,B(x)

[1..B() dependent function

Ids(a,b) equality a =b

41/47

Outline

© An interpretation of type theory in propositions

42/47

Interpreting types as propositions

Syntax Logic

A proposition A
a:A a is a proof of A
1 T

0 1

AXxB AAB

A—B A=B

A+B AVB

x:A F B(x) predicate BonA
>eaBx) Jx € A, B(x)

[[.aB®x) Vx € A, B(x)
Id,(a,b) equality a =b

® The connectives V and 3 thus obtained behave constructively.

® Known as the Curry-Howard correspondence.

43/47

Definition
-A = A—>0
Exercise

1. Construct a term of type A — ——A

2. Try to construct a term of type -—A — A

Negation

44/ 47

Summary: Logic in type theory

Curry-Howard correspondence resp. Brouwer-Heyting-Kolmogorov
interpretation:

® propositions are types

® proofs of P are terms of type P
Hence

¢ In principle, all types could be called propositions.

® To prove a proposition P means to construct a term of type P.

® In UF, only some types are called ‘propositions’ (and only
some types are called ‘sets’), cf. later.

Convention

For type X, we also say “Show X” or “Prove X” for “Construct a
term of type X”.

45/47

true is not false

Exercise
Construct a term of type —(ld(true, false)).

Hint: use transport? with a suitable B : Bool — Type

Solution

Set B := reCpoo|(Type, 1,0) : Bool — Type. Then B(true) =1 and
B(false) = 0.

Hence

Ap : Id(true, false).transport®(p,t) : Id(true,false) — 0

46/ 47

Dependent elimination for 0, 1, Bool

0 Ifx:0 F C(x)is atype family and x : 0, then
ind;(C,x) : C(x)
1 Ifx:1 F C(x)is a type family and c, : C(t) and
x: 1, then ind{(C,c,x) : C(x)
Bool Ifx: Bool F C(x) is a type family and ci,,. : C(true)
and cg,ee : C(false) and x : Bool, then
indg,oi(C,c,c’,x) : Clx)

47/ 47

	The syntax of type theory and an interpretation in sets
	An interpretation of type theory in propositions

