Category Theory in UniMath

Niels van der Weide

Radboud University, The Netherlands

This talk

- What are univalent categories?
- How to construct univalent categories?

Note on terminology: during this talk, I use terminology from UniMath (different from HoTT book).

Categories in Univalent Foundations

Definition (Precategory)

A precategory \mathcal{C} consists of

- A type \mathcal{C}_{0} of objects;
- For $x, y: \mathcal{C}_{0}$ a type $\mathcal{C}_{1}(x, y)$ of morphisms;
- For $x: \mathcal{C}_{0}$ an identity morphism id $_{x}: \mathcal{C}_{1}(x, x)$;
- For $x, y, z: \mathcal{C}_{0}$ and $f: \mathcal{C}_{1}(x, y)$ and $g: \mathcal{C}_{1}(y, z)$, a composition $f \cdot g: \mathcal{C}_{1}(x, z)$
such that
- $f \cdot \mathrm{id}_{x}=f$;
- $\mathrm{id}_{y} \cdot f=f$;
- $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.

Categories in Univalent Foundations

- Equality is proof relevant in UF.
- Precategories can have 'higher' structure given by the paths.
- Eg, the 1-cells are morphisms, 2-cells are equalities between morphisms.
- For categories, we want this to collapse.

Categories in Univalent Foundations

Definition (Category)

A category \mathcal{C} consists of

- A type \mathcal{C}_{0} of objects;
- For $x, y: \mathcal{C}_{0}$ a set $\mathcal{C}_{1}(x, y)$ of morphisms;
- For $x: \mathcal{C}_{0}$ an identity morphism id $_{x}: \mathcal{C}_{1}(x, x)$;
- For $x, y, z: \mathcal{C}_{0}$ and $f: \mathcal{C}_{1}(x, y)$ and $g: \mathcal{C}_{1}(y, z)$, a composition $f \cdot g: \mathcal{C}_{1}(x, z)$
such that
- $f \cdot \mathrm{id}_{x}=f$;
- $\mathrm{id}_{y} \cdot f=f$;
- $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.
(Recall: a set is a type for which equality is proof irrelevant)

Examples of Categories

- The category SET of sets and functions
- The category of pointed sets and point preserving maps
- The category of monoids and homomorphisms

Towards Univalent Categories: Isomorphisms

Definition

A morphism $f: \mathcal{C}_{1}(x, y)$ is an isomorphism if the map $\lambda\left(g: \mathcal{C}_{1}(y, z)\right), f \cdot g$ is an equivalence for every $z: \mathcal{C}_{0}$. We denote the type of isomorphisms from X to Y by $X \cong Y$. Note:

- We can find inverses.
- Being an isomorphism is a proposition
- id $_{x}$ is an isomorphism

In UniMath: is_iso

Towards Univalent Categories: Isomorphisms

Alternatively, we can define

Definition

A morphism $f: \mathcal{C}_{1}(x, y)$ is an isomorphism if we have $g: \mathcal{C}_{1}(y, x)$ such that $f \cdot g=\mathrm{id}_{x}$ and $g \cdot f=\mathrm{id}_{y}$.
Note that these definitions are equivalent for categories. In UniMath: z_iso.

Univalent Categories

Definition (Univalence Axiom)

- For all types X, Y we have a map idtoeq $X Y: X=Y \rightarrow X \simeq Y$.
- UA: the map $X=Y \rightarrow X \cong Y$ is an equivalence.

Definition (Univalent Categories)
Let \mathcal{C} be a category.

- For all objects $x, y: \mathcal{C}_{0}$ we have a map idtoiso $_{x, y}: x=y \rightarrow x \cong y$.
- A category \mathcal{C} is univalent if for all $x, y: \mathcal{C}_{0}$ the map idtoiso ${ }_{x, y}$ is an equivalence.

What's so good about univalent categories?

- Nice properties: initial objects are unique (exercise)
- It's the "right" notion of category in univalent foundations.
- In the simplicial set interpretation, univalent categories correspond to actual categories.

SET is Univalent

To prove SET is univalent, we factor idtoiso as follows.

Hence, idtoiso is equal to an equivalence and thus an equivalence.

What about Monoids?

- Is monoids a univalent category?
- Monoids have a more complicated structure, which makes a direct proof harder.
- We need machinery to make such proofs more manageable.
- For this, we use displayed categories

Displayed Categories, The Idea

- Suppose, we have a category \mathcal{C}.
- A displayed category \mathcal{D} represents "structure" or "properties" to be added to \mathcal{C}.
- Displayed categories give rise to a total category $\int \mathcal{D}$
- The objects of $\int \mathcal{D}$ are pairs of $x: \mathcal{C}_{0}$ with the extra structure.
- Furthermore, we have a projection (forgetful functor) from the total category to \mathcal{C}.
- Goal of displayed categories: reason about the total category.

Displayed Categories, The Data

Definition

A displayed category \mathcal{D} over \mathcal{C} consists of

- For each $x: \mathcal{C}_{0}$ a type \mathcal{D}_{0}^{x} of objects over x.
- For each $f: \mathcal{C}_{1}(x, y), \bar{x}: \mathcal{D}_{0}^{x}$ and $\bar{y}: \mathcal{D}_{0}^{y}$ a set $\mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$ of morphisms over f.
- For each $x: \mathcal{C}_{0}$ and $\bar{x}: \mathcal{D}_{0}^{x}$ an identity $\overline{\mathrm{id}_{x}}: \mathcal{D}_{1}^{\mathrm{id}_{x}}(\bar{x}, \bar{x})$.
- For $f: \mathcal{C}_{1}(x, y), g: \mathcal{C}_{1}(y, z), \bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$. and $\bar{g}: \mathcal{D}_{1}^{g}(\bar{y}, \bar{z})$, a composition $\bar{f} \cdot \bar{g}: \mathcal{D}_{1}^{f \cdot g}(\bar{x}, \bar{z})$.

What about the laws?

Displayed Categories, Towards The Laws

Let's try to write the right unitality law.
Suppose $\bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$. Then

$$
\bar{f} \cdot \overline{\mathrm{id}_{y}}: \mathcal{D}_{1}^{f \cdot \mathrm{id}_{y}}(\bar{x}, \bar{y})
$$

Hence, the law $\bar{f}=\bar{f} \cdot \overline{\mathrm{id}_{y}}$ does not type check.

Displayed Categories, Towards The Laws

Let's try to write the right unitality law.
Suppose $\bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$. Then

$$
\bar{f} \cdot \overline{\mathrm{id}_{y}}: \mathcal{D}_{1}^{f \cdot \mathrm{id}_{y}}(\bar{x}, \bar{y})
$$

Hence, the law $\bar{f}=\bar{f} \cdot \overline{\mathrm{id}_{y}}$ does not type check.
Solution: use transport. Laws become dependent equalities.

Displayed Categories, The Laws

Suppose, $f, g: \mathcal{C}_{1}(x, y)$ and $p: f=g$. Then

$$
\operatorname{transport}^{\lambda h, \mathcal{D}_{1}^{h}(\bar{x}, \bar{y})} p: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y}) \rightarrow \mathcal{D}_{1}^{g}(\bar{x}, \bar{y})
$$

Recall that

$$
\begin{gathered}
\bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y}) \\
f \cdot \overline{\operatorname{id}}_{y}: \mathcal{D}_{1}^{f \cdot \mathrm{id}_{y}}(\bar{x}, \bar{y})
\end{gathered}
$$

So, it suffices to find a path $f=f \cdot$ id $_{y}$. This is one of the axioms of categories.

The Total Category

Definition

Let \mathcal{D} be a displayed category over \mathcal{C}. Then we define the total category $\int \mathcal{D}$ to be the category for which

- objects are pairs $x: \mathcal{C}_{0}$ and $\bar{x}: \mathcal{D}_{0}^{x}$
- morphisms from (x, \bar{x}) to (y, \bar{y}) are pairs $f: \mathcal{C}_{1}(x, y)$ and $\bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$

Definition

We have a projection functor $\pi_{1}: \int D \longrightarrow C$. It sends (x, \bar{x}) to x and (f, \bar{f}) to f.

Examples of Displayed Categories: Pointed Sets

Define a displayed category P over SET:

- Objects over X are elements $x: X$
- Morphisms over $f: X \rightarrow Y$ from $x: X$ to $y: Y$ are paths $f x=y$
- Morphism over id x is a path $\mathrm{id}_{x} x=x$ (reflexivity)

The total category $\int P$ is the category of pointed sets. Objects: pair of a set X and $x: X$. Morphisms: point preserving maps.

Examples of Displayed Categories: Monoids

Define a displayed category over SET

- Objects over X are monoid structures
- Morphisms over f are proofs that f is a homomorphism

The total category is the category of monoids.

Constructions with Displayed Categories

Some constructions which allow building displayed categories modularly.

- The full subcategory is a displayed category
- We can take the product of displayed categories

A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

- Start with the category of sets.
- Define a displayed category P on sets. Objects over X are points.

A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

- Start with the category of sets.
- Define a displayed category P on sets. Objects over X are points.
- Define a displayed category M on sets. Objects over X are maps $X \rightarrow X$.

A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

- Start with the category of sets.
- Define a displayed category P on sets. Objects over X are points.
- Define a displayed category M on sets. Objects over X are maps $X \rightarrow X$.
- This gives a displayed category $P \times M$ over sets (the product)
- Call its total category \mathcal{E}.
- Objects of \mathcal{E} are pairs $(X,(e, f))$ with $e: X$ and $f: X \rightarrow X$

A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

- Start with the category of sets.
- Define a displayed category P on sets. Objects over X are points.
- Define a displayed category M on sets. Objects over X are maps $X \rightarrow X$.
- This gives a displayed category $P \times M$ over sets (the product)
- Call its total category \mathcal{E}.
- Objects of \mathcal{E} are pairs $(X,(e, f))$ with $e: X$ and $f: X \rightarrow X$
- Define a displayed category M over \mathcal{E}. Objects over $(X,(e, f))$ are proofs that it's a monoid.
- Then the total category of M is the category of monoids.

A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

- Start with the category of sets.
- Define a displayed category P on sets. Objects over X are points.
- Define a displayed category M on sets. Objects over X are maps $X \rightarrow X$.
- This gives a displayed category $P \times M$ over sets (the product)
- Call its total category \mathcal{E}.
- Objects of \mathcal{E} are pairs $(X,(e, f))$ with $e: X$ and $f: X \rightarrow X$
- Define a displayed category M over \mathcal{E}. Objects over $(X,(e, f))$ are proofs that it's a monoid.
- Then the total category of M is the category of monoids.

Untangling (break down in small parts) and stratification (layers)

Towards Displayed Univalence: Displayed Isomorphisms

Definition

Let \mathcal{D} be a displayed category over \mathcal{C} and suppose, f is an isomorphism with inverse g. We say $\bar{f}: \mathcal{D}_{1}^{f}(\bar{x}, \bar{y})$ is a (displayed) isomorphism if there is $\bar{g}: \mathcal{D}_{1}^{g}(\bar{y}, \bar{x})$ which are mutual inverses (again as dependent equalities).
We write $\bar{x} \cong_{f} \bar{y}$ for the type of displayed isomorphisms over f.

Displayed Univalence

- Again the identity $\overline{\mathrm{id}_{x}}$ is an isomorphism
- By path induction, we get for $p: x=y$ a map

$$
\operatorname{dispidtoiso}_{\bar{x}, \bar{y}}: \bar{x}={ }_{p} \bar{y} \rightarrow \bar{x} \cong_{\text {idtoiso }_{x, y} p} \bar{y}
$$

- We say \mathcal{D} is displayed univalent if dispidtoiso is an equivalence.

Main Theorem

Theorem
If \mathcal{C} is univalent and \mathcal{D} is displayed univalent, then $\int \mathcal{D}$ is univalent.

Examples of Displayed Univalent Categories

- The displayed category P of pointed sets is displayed univalent and thus the category of pointed sets is univalent.
- The displayed category P of monoids is displayed univalent and thus the category of monoids is univalent.

Conclusion

Take away message:

- Displayed categories are a convenient way to modularly construct univalent categories.
- Work with small "edible" pieces.

In the exercises:

- Study univalent categories more closely
- Define monoids as a displayed category

Literature

- HoTT Book, Chapter 9
- Ahrens, Benedikt and Lumsdaine, Peter LeFanu. "Displayed Categories." Logical Methods in Computer Science 15 (2019).
- Ahrens, B., Kapulkin, K., \& Shulman, M. (2015). Univalent Categories and the Rezk Completion. Mathematical Structures in Computer Science, 25(5), 1010-1039.

