
Set-level mathematics

Benedikt Ahrens

School on Univalent Mathematics, Cortona, 2022

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

4 Algebraic structures

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

4 Algebraic structures

Definition of homotopy levels

isofhlevel : Nat→ Type→ Prop
isofhlevel(0)(X) :≡ isContr(X)

isofhlevel(S(n))(X) :≡
∏

x,x′:X

isofhlevel(n,x x′)

Definition

Set :≡
∑

X:Type

isofhlevel(2)(X)

• Any two parallel paths in a set are homotopic.
• Any closed path (loop) on x is homotopic to the constant path
refl(x).

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

4 Algebraic structures

Decidable equality

Definition
A type X is decidable if there is a term of type

X +¬X

Definition
A type X has decidable path-equality if we can write a term of
type

∏

x,x′:A

(x x′) +¬(x x′)

(that is, if all its paths types are decidable)

Hedberg’s theorem

Theorem (Hedberg)
If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.

Closure properties

•
∑

x:A B(x) is a set if A and all B(x) are
• A× B is a set if A and B are
•
∏

x:A B(x) is a set if all B(x) are
• A→ B is a set if B is

• A is a set if it is a proposition

Exercise
Do you know
• a type that is a set?
• a type for which you don’t know (yet) whether it is a set?
• a type for which you know it is not a set?

Another set

Theorem
The type

Prop :≡
∑

X:Type

isaprop(X)

is a set.

The proof relies on the univalence axiom for the universe Type.

Exercise
How would you generalize the above statement to any h-level?
How would you attempt proving it?

Remark
Prop does not have decidable equality.

Are all types sets?

Is there a type that is not a set?
It depends:
• In Martin-Löf type theory some types can not be shown to be

sets.
• In univalent type theory some types can be shown not to be

sets.

Types that are not sets

Suppose that Type is a univalent universe containing the type Bool.

Exercise
Show that Type not a set.

Which property of Bool does the proof of the above result exploit?

Exercise
Show that

Set :≡
∑

X:Type

isofhlevel(2)(X)

is not a set. Does it have an h-level?

Sets and propositions
• It is often useful for types representing “properties” to be

propositions (as we’ll see later).
• Properties involving equality are usually propositions when

the types involved are sets, but in general care is needed.

Example
Given f : X→ Y,

isInjective(f) :≡
∏

x,x′:X

f(x) f(x′)→ x x′

is not a proposition in general, but it is if X is a set.

Exercise
Define isInjective(f) in a such a way that it is a proposition for X
and Y of any level.

Isomorphism vs. equivalence

Given f : A→ B,

isiso(f) :≡
∑

g:B→A
(g ◦ f 1A)× (f ◦ g 1B)

is not a proposition in general, but it is if A and B are sets.

Warning
Stating the univalence axiom with isomorphisms instead of
equivalences yields an inconsistency.

When A and B are sets, then isiso(f)' isequiv(f).

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

4 Algebraic structures

Predicates on types

A subtype A on a type X is a map

A : X→ Prop

Exercise
Show that the type of subtypes of X is a set.

The carrier of a subtype A is the type of elements satisfying A:

carrier(A) :=
∑

x:X
A(x)

Relations on a type

A binary relation R on a type X is a map

R : X→ X→ Prop

Exercise
Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :≡
∏

x:X
R(x)(x)

Exercise
Formulate the properties of being symmetric, transitive, an
equivalence relation.

Set-level quotient
Given type X and an equivalence relation R on X, the quotient

X
p
−→ X/R

is defined as the unique pair (X/R,p) such that any compatible map
f into a set Y factors via p:

X

p

��

f

��

X/R
∃! f ′

// Y (set)

I.e., the map given by precomposition with p is an equivalence
∑

f :X→Y

iscompatible(f) ' X/R→ Y

The quotient set
To define the quotient X/R of a set by an equivalence relation, we
proceed as usual in set theory:
• First we define for a subtype A : X→ Prop

iseqclass(A,R) :≡ ||carrier(A)||

×
∏

x,y:A
Rxy→ Ax→ Ay

×
∏

x,y:A
Ax→ Ay→ Rxy

• Then we define

X/R :≡
∑

A:X→Prop

iseqclass(A,R)

Exercise
Show that X/R is a set. Show that it has the desired universal
property of a quotient.

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

4 Algebraic structures

Reminder: paths between pairs

Given B : A→ Type and a,a′ : A and b : B(a) and b′ : B(a′),

(a,b) (a′,b′) '
∑

p:a a′
transportB

�

p, b
�

 b′

If B(x) is a proposition for any x : A, then this can be simplified to

(a,b) (a′,b′) ' a a′

Exercise
Why?

Monoids

Traditionally (in set theory), a monoid is a triple (M,µ, e) of
• a set M
• a multiplication µ : M×M→M
• a unit e ∈M

subject to the usual axioms: associativity, and left and right
neutrality.

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M (multiplication)
3. e : M (neutral element)
4. α : Π(a,b,c:M)µ(µ(a,b), c) µ(a,µ(b, c)) (associativity)
5. λ : Π(a:M)µ(e,a) a (left neutrality)
6. ρ : Π(a:M)µ(a, e) a (right neutrality)

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is a triple (M,µ, e) as above
• proof is a triple (α,λ,ρ) saying that (data) satisfy the usual

axioms.

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M (multiplication)
3. e : M (neutral element)
4. α : Π(a,b,c:M)µ(µ(a,b), c) µ(a,µ(b, c)) (associativity)
5. λ : Π(a:M)µ(e,a) a (left neutrality)
6. ρ : Π(a:M)µ(a, e) a (right neutrality)

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is a triple (M,µ, e) as above
• proof is a triple (α,λ,ρ) saying that (data) satisfy the usual

axioms.

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M (multiplication)
3. e : M (neutral element)
4. α : Π(a,b,c:M)µ(µ(a,b), c) µ(a,µ(b, c)) (associativity)
5. λ : Π(a:M)µ(e,a) a (left neutrality)
6. ρ : Π(a:M)µ(a, e) a (right neutrality)

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is a triple (M,µ, e) as above
• proof is a triple (α,λ,ρ) saying that (data) satisfy the usual

axioms.

The type of monoids

• We want to regard two monoids (data,proof) and
(data′,proof ′) as being the same if data is the same as data′.

• This is ensured if the type encoding the monoid axioms is a
proposition.

• This is in turn guaranteed as long as the underlying type M is
required to be a set.

Monoid :≡
∑

(M:Set)

∑

(µ,e):MonoidStr(M)

MonoidAxioms(M, (µ, e))

with
isProp(MonoidAxioms(M, (µ, e)))

Monoid isomorphisms

Given monoids M≡ (M,µ, e,α,λ,ρ) and M′ ≡ (M′,µ′, e′,α′,λ′,ρ′),
a monoid isomorphism is a bijection f : M ∼=M′ preserving
multiplication and neutral element.

M M′ ' (M,µ, e) (M′,µ′, e′)

'
∑

p:M M′
(transportY 7→(Y×Y→Y)(p,µ) µ′)

× (transportY 7→Y(p, e) e′)

'
∑

f :M∼=M′

�

f ◦m ◦ (f−1 × f−1) m′
�

× (f ◦ e e′)
' M∼=M′

Paths are isomorphisms for groups

G G′ ' (G,S) (G′,S′)

'
∑

p:G G′
transportGrpStructure(p,S) S′

'
∑

p:G G′
(transportY 7→(Y×Y→Y)(p,m) m′)

× (transportY 7→(Y→Y)(p, i) i′)
× (transportY 7→Y(p, e) e′)

'
∑

f :G'G′

�

f ◦m ◦ (f−1 × f−1) m′
�

×
�

f ◦ i ◦ f−1 i′
�

× (f(e) e′)
' (G∼= G′)

Transport along group isomorphism

We now have two ingredients:
1. (G G′) ' (G∼= G′)
2. transportT : (G G′)→ T(G)→ T(G′) for any structure T on

the type of groups
Composing these, we get

transportT : (G∼= G′)→ T(G)→ T(G′)

In other words, any property or structure on groups that can be
expressed in univalent type theory can be transported along
isomorphism of groups.

Structure Identity Principle

The Structure Identity Principle (Coquand, Aczel) says
Isomorphic mathematical structures are structurally identi-
cal; i.e. have the same structural properties.

The Structure Identity Principle holds in Univalent Foundations for
many algebraic structures: isomorphic such structures have all the
same (definable) properties.

	Reminder: homotopy levels
	How to show that something is (not) a set?
	Subtypes, relations, set-level quotient
	Algebraic structures

