Set-level mathematics

Benedikt Ahrens

School on Univalent Mathematics, Cortona, 2022

Outline

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

Algebraic structures

Definition of homotopy levels

isofhlevel : Nat
$$\rightarrow$$
 Type \rightarrow Prop
isofhlevel(o)(X) := isContr(X)
isofhlevel(S(n))(X) := $\prod_{x,x':X}$ isofhlevel(n, x \rightsquigarrow x')

Definition

Set :=
$$\sum_{X:Type}$$
 isofhlevel(2)(X)

- Any two parallel paths in a set are homotopic.
- Any closed path (loop) on *x* is homotopic to the constant path refl(*x*).

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

Algebraic structures

Decidable equality

Definition

A type *X* is **decidable** if there is a term of type

 $X + \neg X$

Definition

A type *X* has **decidable path-equality** if we can write a term of type

$$\prod_{c,x':A} (x \rightsquigarrow x') + \neg (x \rightsquigarrow x')$$

(that is, if all its paths types are decidable)

Hedberg's theorem

Theorem (Hedberg)

If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.

Closure properties

- $\sum_{x:A} B(x)$ is a set if *A* and all B(x) are
- $A \times B$ is a set if A and B are
- $\prod_{x:A} B(x)$ is a set if all B(x) are
- $A \rightarrow B$ is a set if B is
- *A* is a set if it is a proposition

Exercise

Do you know

- a type that is a set?
- a type for which you don't know (yet) whether it is a set?
- a type for which you know it is not a set?

Another set

Theorem

The type

$$\mathsf{Prop} :\equiv \sum_{X:\mathsf{Type}} \mathsf{isaprop}(X)$$

is a set.

The proof relies on the univalence axiom for the universe Type.

Exercise

How would you generalize the above statement to any h-level? How would you attempt proving it?

Remark

Prop does not have decidable equality.

Are all types sets?

Is there a type that is not a set?

It depends:

- In Martin-Löf type theory some types can not be shown to be sets.
- In univalent type theory some types can be shown not to be sets.

Types that are **not** sets

Suppose that Type is a univalent universe containing the type Bool.

Exercise

Show that Type not a set.

Which property of Bool does the proof of the above result exploit?

Exercise

Show that

Set :=
$$\sum_{X:Type}$$
 isofhlevel(2)(X)

is not a set. Does it have an h-level?

Sets and propositions

- It is often useful for types representing "properties" to be propositions (as we'll see later).
- Properties involving equality are usually propositions when the types involved are *sets*, but in general care is needed.

Example

Given $f: X \to Y$,

$$\mathsf{isInjective}(f) \ :\equiv \ \prod_{x,x':X} f(x) \leadsto f(x') \to x \leadsto x'$$

is not a proposition in general, but it is if X is a set.

Exercise

Define islnjective(f) in a such a way that it is a proposition for X and Y of any level.

Isomorphism vs. equivalence

Given $f : A \rightarrow B$,

$$isiso(f) := \sum_{g:B \to A} (g \circ f \rightsquigarrow 1_A) \times (f \circ g \rightsquigarrow 1_B)$$

is **not** a proposition in general, but it is if *A* and *B* are sets.

Warning

Stating the univalence axiom with isomorphisms instead of equivalences yields an inconsistency.

When *A* and *B* are sets, then $isiso(f) \simeq isequiv(f)$.

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

Algebraic structures

Predicates on types

A **subtype** *A* on a type *X* is a map

 $A: X \rightarrow \mathsf{Prop}$

Exercise

Show that the type of subtypes of *X* is a set.

The **carrier** of a subtype *A* is the type of elements satisfying *A*:

$$carrier(A) := \sum_{x:X} A(x)$$

Relations on a type

A **binary relation** *R* on a type *X* is a map

$$R: X \to X \to \mathsf{Prop}$$

Exercise

Show that the type of binary relations on *X* is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
$$\prod_{x:X} R(x)(x)$$

Exercise

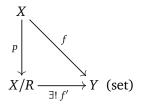
Formulate the properties of being symmetric, transitive, an equivalence relation.

Set-level quotient

Given type *X* and an equivalence relation *R* on *X*, the **quotient**

 $X \xrightarrow{p} X/R$

is defined as the unique pair (X/R, p) such that any compatible map f into a set Y factors via p:



I.e., the map given by precomposition with p is an equivalence

$$\sum_{f:X \to Y} \text{iscompatible}(f) \simeq X/R \to Y$$

The quotient set

To define the quotient X/R of a set by an equivalence relation, we proceed as usual in set theory:

• First we define for a subtype $A : X \rightarrow \mathsf{Prop}$

iseqclass(A, R) := ||carrier(A)||

$$\times \prod_{x,y:A} Rxy \to Ax \to Ay$$

$$\times \prod_{x,y:A} Ax \to Ay \to Rxy$$

• Then we define

$$X/R :\equiv \sum_{A:X \to \mathsf{Prop}} \mathsf{iseqclass}(A, R)$$

Exercise

Show that X/R is a set. Show that it has the desired universal property of a quotient.

Outline

1 Reminder: homotopy levels

2 How to show that something is (not) a set?

3 Subtypes, relations, set-level quotient

Algebraic structures

Reminder: paths between pairs

Given $B : A \rightarrow \text{Type}$ and a, a' : A and b : B(a) and b' : B(a'),

$$(a,b) \rightsquigarrow (a',b') \simeq \sum_{p:a \rightsquigarrow a'} \operatorname{transport}^{B}(p,b) \rightsquigarrow b'$$

If B(x) is a proposition for any x : A, then this can be simplified to

$$(a,b) \rightsquigarrow (a',b') \simeq a \rightsquigarrow a'$$

Exercise Why?

Monoids

Traditionally (in set theory), a monoid is a triple (M, μ, e) of

- a set M
- a multiplication $\mu: M \times M \to M$
- a unit $e \in M$

subject to the usual axioms: associativity, and left and right neutrality.

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- 1. *M* : Set
- 2. $\mu: M \times M \to M$ (multiplication)
- 3. *e* : *M* (neutral element)
- 4. $\alpha: \Pi_{(a,b,c:M)}\mu(\mu(a,b),c) \rightsquigarrow \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) \rightsquigarrow a$
- 6. $\rho: \Pi_{(a:M)}\mu(a,e) \rightsquigarrow a$

(associativity) (left neutrality) (right neutrality)

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- 1. *M* : Set
- 2. $\mu: M \times M \to M$ (multiplication)
- 3. e: M (neutral element)
- 4. $\alpha : \Pi_{(a,b,c:M)} \mu(\mu(a,b),c) \rightsquigarrow \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) \rightsquigarrow a$

6.
$$\rho: \Pi_{(a:M)}\mu(a,e) \rightsquigarrow a$$

(associativity) (left neutrality) (right neutrality)

Why M : Set?

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- 1. *M* : Set
- 2. $\mu: M \times M \to M$ (multiplication)
- 3. e: M (neutral element)
- 4. $\alpha : \prod_{(a,b,c:M)} \mu(\mu(a,b),c) \rightsquigarrow \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) \rightsquigarrow a$

6.
$$\rho: \Pi_{(a:M)}\mu(a,e) \rightsquigarrow a$$

(associativity) (left neutrality) (right neutrality)

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data, proof) where

- *data* is a triple (M, μ, e) as above
- *proof* is a triple (α, λ, ρ) saying that (*data*) satisfy the usual axioms.

The type of monoids

- We want to regard two monoids (*data*, *proof*) and (*data'*, *proof'*) as being the same if *data* is the same as *data'*.
- This is ensured if the type encoding the monoid axioms is a **proposition**.
- This is in turn guaranteed as long as the underlying type *M* is required to be a **set**.

Monoid :=
$$\sum_{(M:Set)} \sum_{(\mu,e):MonoidStr(M)} MonoidAxioms(M, (\mu, e))$$

with

 $isProp(MonoidAxioms(M, (\mu, e)))$

Monoid isomorphisms

Given monoids $\mathbf{M} \equiv (M, \mu, e, \alpha, \lambda, \rho)$ and $\mathbf{M}' \equiv (M', \mu', e', \alpha', \lambda', \rho')$, a **monoid isomorphism** is a bijection $f : M \cong M'$ preserving multiplication and neutral element.

$$\begin{split} \mathbf{M} & \leadsto \mathbf{M}' & \simeq & (M, \mu, e) \rightsquigarrow (M', \mu', e') \\ & \simeq & \sum_{p:M \hookrightarrow M'} (\text{transport}^{Y \mapsto (Y \times Y \to Y)}(p, \mu) \leadsto \mu') \\ & \times (\text{transport}^{Y \mapsto Y}(p, e) \leadsto e') \\ & \simeq & \sum_{f:M \cong M'} (f \circ m \circ (f^{-1} \times f^{-1}) \leadsto m') \\ & \times (f \circ e \leadsto e') \\ & \simeq & \mathbf{M} \cong \mathbf{M}' \end{split}$$

Paths are isomorphisms for groups

$$\begin{aligned} \mathbf{G} \rightsquigarrow \mathbf{G}' &\simeq (G,S) \rightsquigarrow (G',S') \\ &\simeq \sum_{p:G \rightsquigarrow G'} \operatorname{transport}^{\operatorname{GrpStructure}}(p,S) \rightsquigarrow S' \\ &\simeq \sum_{p:G \rightsquigarrow G'} (\operatorname{transport}^{Y \mapsto (Y \times Y \rightarrow Y)}(p,m) \rightsquigarrow m') \\ &\times (\operatorname{transport}^{Y \mapsto (Y \rightarrow Y)}(p,i) \rightsquigarrow i') \\ &\times (\operatorname{transport}^{Y \mapsto Y}(p,e) \rightsquigarrow e') \\ &\simeq \sum_{f:G \simeq G'} (f \circ m \circ (f^{-1} \times f^{-1}) \rightsquigarrow m') \\ &\times (f \circ i \circ f^{-1} \rightsquigarrow i') \\ &\times (f(e) \rightsquigarrow e') \\ &\simeq (\mathbf{G} \cong \mathbf{G}') \end{aligned}$$

Transport along group isomorphism

We now have two ingredients:

1.
$$(\mathbf{G} \rightsquigarrow \mathbf{G}') \simeq (\mathbf{G} \cong \mathbf{G}')$$

2. transport^{*T*} : ($\mathbf{G} \rightsquigarrow \mathbf{G}'$) $\rightarrow T(\mathbf{G}) \rightarrow T(\mathbf{G}')$ for any structure *T* on the type of groups

Composing these, we get

$$transport^T : (\mathbf{G} \cong \mathbf{G}') \to T(\mathbf{G}) \to T(\mathbf{G}')$$

In other words, any property or structure on groups that can be expressed in univalent type theory can be transported along isomorphism of groups.

Structure Identity Principle

The Structure Identity Principle (Coquand, Aczel) says Isomorphic mathematical structures are structurally identical; i.e. have the same structural properties.

The Structure Identity Principle holds in Univalent Foundations for many algebraic structures: isomorphic such structures have **all** the same (definable) properties.