# Set-level mathematics 

Benedikt Ahrens

School on Univalent Mathematics, Cortona, 2022

## Outline

(1) Reminder: homotopy levels

2 How to show that something is (not) a set?
(3) Subtypes, relations, set-level quotient
(4) Algebraic structures

## Outline

(1) Reminder: homotopy levels

2 How to show that something is (not) a set?
(3) Subtypes, relations, set-level quotient
(4) Algebraic structures

## Definition of homotopy levels

$$
\begin{aligned}
& \text { isofhlevel: Nat } \rightarrow \text { Type } \rightarrow \text { Prop } \\
& \text { isofhlevel }(0)(X) \quad: \equiv \text { isContr }(X) \\
& \text { isofhlevel }(S(n))(X): \equiv \prod_{x, x^{\prime}: X} \text { isofhlevel }\left(n, x \rightsquigarrow x^{\prime}\right)
\end{aligned}
$$

## Definition

$$
\text { Set }: \equiv \sum_{X: \text { Type }} \text { isofhlevel(2)(X) }
$$

- Any two parallel paths in a set are homotopic.
- Any closed path (loop) on $x$ is homotopic to the constant path refl $(x)$.


## Outline

## (1) Reminder: homotopy levels

2 How to show that something is (not) a set?
(3) Subtypes, relations, set-level quotient
(4) Algebraic structures

## Decidable equality

## Definition

A type $X$ is decidable if there is a term of type

$$
X+\neg X
$$

## Definition

A type $X$ has decidable path-equality if we can write a term of type

$$
\prod_{x, x^{\prime}: A}\left(x \rightsquigarrow x^{\prime}\right)+\neg\left(x \rightsquigarrow x^{\prime}\right)
$$

(that is, if all its paths types are decidable)

## Hedberg's theorem

## Theorem (Hedberg)

If a type $X$ has decidable equality, then it is a set.
In the problem session, we will show that Bool and Nat are sets.

## Closure properties

- $\sum_{x: A} B(x)$ is a set if $A$ and all $B(x)$ are
- $A \times B$ is a set if $A$ and $B$ are
- $\prod_{x: A} B(x)$ is a set if all $B(x)$ are
- $A \rightarrow B$ is a set if $B$ is
- $A$ is a set if it is a proposition


## Exercise

Do you know

- a type that is a set?
- a type for which you don't know (yet) whether it is a set?
- a type for which you know it is not a set?


## Another set

## Theorem

The type

$$
\text { Prop }: \equiv \sum_{X: \text { Type }} \text { isaprop }(X)
$$

is a set.
The proof relies on the univalence axiom for the universe Type.

## Exercise

How would you generalize the above statement to any h-level? How would you attempt proving it?

## Remark

Prop does not have decidable equality.

## Are all types sets?

Is there a type that is not a set?
It depends:

- In Martin-Löf type theory some types can not be shown to be sets.
- In univalent type theory some types can be shown not to be sets.


## Types that are not sets

Suppose that Type is a univalent universe containing the type Bool.

## Exercise

Show that Type not a set.
Which property of Bool does the proof of the above result exploit?

## Exercise

Show that

$$
\text { Set }: \equiv \sum_{X: \text { Type }} \text { isofhlevel }(2)(X)
$$

is not a set. Does it have an h-level?

## Sets and propositions

- It is often useful for types representing "properties" to be propositions (as we'll see later).
- Properties involving equality are usually propositions when the types involved are sets, but in general care is needed.


## Example

Given $f: X \rightarrow Y$,

$$
\text { isInjective }(f): \equiv \prod_{x, x^{\prime}: X} f(x) \rightsquigarrow f\left(x^{\prime}\right) \rightarrow x \rightsquigarrow x^{\prime}
$$

is not a proposition in general, but it is if $X$ is a set.

## Exercise

Define isInjective $(f)$ in a such a way that it is a proposition for $X$ and $Y$ of any level.

## Isomorphism vs. equivalence

Given $f: A \rightarrow B$,

$$
\text { isiso }(f): \equiv \sum_{g: B \rightarrow A}\left(g \circ f \rightsquigarrow 1_{A}\right) \times\left(f \circ g \rightsquigarrow 1_{B}\right)
$$

is not a proposition in general, but it is if $A$ and $B$ are sets.

## Warning

Stating the univalence axiom with isomorphisms instead of equivalences yields an inconsistency.

When $A$ and $B$ are sets, then isiso $(f) \simeq \operatorname{isequiv}(f)$.

## Outline

(1) Reminder: homotopy levels
(2) How to show that something is (not) a set?
(3) Subtypes, relations, set-level quotient
(4) Algebraic structures

## Predicates on types

A subtype $A$ on a type $X$ is a map

$$
A: X \rightarrow \text { Prop }
$$

## Exercise

Show that the type of subtypes of $X$ is a set.
The carrier of a subtype $A$ is the type of elements satisfying $A$ :

$$
\operatorname{carrier}(A):=\sum_{x: X} A(x)
$$

## Relations on a type

A binary relation $R$ on a type $X$ is a map

$$
R: X \rightarrow X \rightarrow \text { Prop }
$$

## Exercise

Show that the type of binary relations on $X$ is a set.
Properties of such relations are defined as usual, e.g.,

$$
\text { reflexive }(R): \equiv \prod_{x: X} R(x)(x)
$$

## Exercise

Formulate the properties of being symmetric, transitive, an equivalence relation.

## Set-level quotient

Given type $X$ and an equivalence relation $R$ on $X$, the quotient

$$
X \xrightarrow{p} X / R
$$

is defined as the unique pair $(X / R, p)$ such that any compatible map $f$ into a set $Y$ factors via $p$ :

I.e., the map given by precomposition with $p$ is an equivalence

$$
\sum_{f: X \rightarrow Y} \text { iscompatible }(f) \simeq \quad \simeq / R \rightarrow Y
$$

## The quotient set

To define the quotient $X / R$ of a set by an equivalence relation, we proceed as usual in set theory:

- First we define for a subtype $A: X \rightarrow$ Prop

$$
\begin{aligned}
\text { iseqclass }(A, R): \equiv & \|\operatorname{carrier}(A)\| \\
& \times \prod_{x, y: A} R x y \rightarrow A x \rightarrow A y \\
& \times \prod_{x, y: A} A x \rightarrow A y \rightarrow R x y
\end{aligned}
$$

- Then we define

$$
X / R: \equiv \sum_{A: X \rightarrow \operatorname{Prop}} \text { iseqclass }(A, R)
$$

## Exercise

Show that $X / R$ is a set. Show that it has the desired universal property of a quotient.

## Outline

(1) Reminder: homotopy levels
2) How to show that something is (not) a set?
(3) Subtypes, relations, set-level quotient
(4) Algebraic structures

## Reminder: paths between pairs

Given $B: A \rightarrow$ Type and $a, a^{\prime}: A$ and $b: B(a)$ and $b^{\prime}: B\left(a^{\prime}\right)$,

$$
(a, b) \rightsquigarrow\left(a^{\prime}, b^{\prime}\right) \simeq \sum_{p: a \rightsquigarrow \rightarrow a^{\prime}} \operatorname{transport}^{B}(p, b) \rightsquigarrow b^{\prime}
$$

If $B(x)$ is a proposition for any $x: A$, then this can be simplified to

$$
(a, b) \rightsquigarrow\left(a^{\prime}, b^{\prime}\right) \simeq a m a^{\prime}
$$

## Exercise

Why?

## Monoids

Traditionally (in set theory), a monoid is a triple ( $M, \mu, e$ ) of

- a set $M$
- a multiplication $\mu: M \times M \rightarrow M$
- a unit $e \in M$
subject to the usual axioms: associativity, and left and right neutrality.


## Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

1. $M$ : Set
2. $\mu: M \times M \rightarrow M$ (multiplication)
3. $e: M$ (neutral element)
4. $\alpha: \Pi_{(a, b, c: M)} \mu(\mu(a, b), c) \rightsquigarrow \mu(a, \mu(b, c))$
5. $\lambda: \Pi_{(a: M)} \mu(e, a) \rightsquigarrow a$
6. $\rho: \Pi_{(a: M)} \mu(a, e) \rightsquigarrow a$
(associativity)
(left neutrality)
(right neutrality)

## Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

1. $M$ : Set
2. $\mu: M \times M \rightarrow M$ (multiplication)
3. $e: M$ (neutral element)
4. $\alpha: \Pi_{(a, b, c: M)} \mu(\mu(a, b), c) \rightsquigarrow \mu(a, \mu(b, c))$
5. $\lambda: \Pi_{(a: M)} \mu(e, a) \rightsquigarrow a$
6. $\rho: \Pi_{(a: M)} \mu(a, e) \rightsquigarrow a$
(associativity)
(left neutrality)
(right neutrality)
Why $M$ : Set?

## Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

1. $M$ : Set
2. $\mu: M \times M \rightarrow M$ (multiplication)
3. $e: M$ (neutral element)
4. $\alpha: \Pi_{(a, b, c: M)} \mu(\mu(a, b), c) \rightsquigarrow \mu(a, \mu(b, c))$
5. $\lambda: \Pi_{(a: M)} \mu(e, a) \rightsquigarrow a$
(associativity)
(left neutrality)
6. $\rho: \Pi_{(a: M)} \mu(a, e) \rightsquigarrow a$ (right neutrality)

Why $M$ : Set?
Abstractly, a monoid is a (dependent) pair (data,proof) where

- data is a triple $(M, \mu, e)$ as above
- proof is a triple $(\alpha, \lambda, \rho)$ saying that (data) satisfy the usual axioms.


## The type of monoids

- We want to regard two monoids (data, proof) and (data', proof ${ }^{\prime}$ ) as being the same if data is the same as data'.
- This is ensured if the type encoding the monoid axioms is a proposition.
- This is in turn guaranteed as long as the underlying type $M$ is required to be a set.

$$
\text { Monoid }: \equiv \sum_{(M: \operatorname{Set})(\mu, e): M o n o i d S t r(M)} \sum_{M o n o i d A x i o m s}(M,(\mu, e))
$$

with

$$
\text { isProp(MonoidAxioms(M,( } \mu, e)))
$$

## Monoid isomorphisms

Given monoids $\mathbf{M} \equiv(M, \mu, e, \alpha, \lambda, \rho)$ and $\mathbf{M}^{\prime} \equiv\left(M^{\prime}, \mu^{\prime}, e^{\prime}, \alpha^{\prime}, \lambda^{\prime}, \rho^{\prime}\right)$, a monoid isomorphism is a bijection $f: M \cong M^{\prime}$ preserving multiplication and neutral element.

$$
\begin{aligned}
& \mathbf{M} \leadsto \mathbf{M}^{\prime} \simeq(M, \mu, e) \rightsquigarrow\left(M^{\prime}, \mu^{\prime}, e^{\prime}\right) \\
& \simeq \sum_{p: M \rightsquigarrow M^{\prime}}\left(\operatorname{transport}{ }^{Y \mapsto(Y \times Y \rightarrow Y)}(p, \mu) \rightsquigarrow \mu^{\prime}\right) \\
& \times\left(\text { transport }{ }^{Y \mapsto Y}(p, e) \rightsquigarrow e^{\prime}\right) \\
& \simeq \sum_{f: M \cong M^{\prime}}\left(f \circ m \circ\left(f^{-1} \times f^{-1}\right) \rightsquigarrow m^{\prime}\right) \\
& \quad \times\left(f \circ e \rightsquigarrow e^{\prime}\right)
\end{aligned}
$$

$$
\simeq \mathbf{M} \cong \mathbf{M}^{\prime}
$$

## Paths are isomorphisms for groups

$$
\begin{aligned}
& \mathbf{G} \rightsquigarrow \mathbf{G}^{\prime} \simeq(G, S) \rightsquigarrow\left(G^{\prime}, S^{\prime}\right) \\
& \simeq \sum_{p: G \rightsquigarrow G^{\prime}} \text { transport }{ }^{\text {GrpStructure }}(p, S) \rightsquigarrow S^{\prime} \\
& \simeq \sum_{p: G \rightsquigarrow G^{\prime}}\left(\text { transport }^{Y \rightarrow(Y \times Y \rightarrow Y)}(p, m) \rightsquigarrow m^{\prime}\right) \\
& \times\left(\text { transport }{ }^{Y \rightarrow(Y \rightarrow Y)}(p, i) \rightsquigarrow i^{\prime}\right) \\
& \times\left(\text { transport }^{Y \rightarrow Y}(p, e) \rightsquigarrow e^{\prime}\right) \\
& \simeq \sum_{f: G \sim G^{\prime}}\left(f \circ m \circ\left(f^{-1} \times f^{-1}\right) \rightsquigarrow m^{\prime}\right) \\
& \times\left(f \circ i \circ f^{-1} m i^{\prime}\right) \\
& \times\left(f(e) m e^{\prime}\right) \\
& \simeq\left(G \cong \mathbf{G}^{\prime}\right)
\end{aligned}
$$

## Transport along group isomorphism

We now have two ingredients:

1. $\left(\mathbf{G} \rightsquigarrow \mathbf{G}^{\prime}\right) \simeq\left(\mathbf{G} \cong \mathbf{G}^{\prime}\right)$
2. transport ${ }^{T}:\left(\mathbf{G} \rightsquigarrow \mathbf{G}^{\prime}\right) \rightarrow T(\mathbf{G}) \rightarrow T\left(\mathbf{G}^{\prime}\right)$ for any structure $T$ on the type of groups
Composing these, we get

$$
\text { transport }^{T}:\left(\mathbf{G} \cong \mathbf{G}^{\prime}\right) \rightarrow T(\mathbf{G}) \rightarrow T\left(\mathbf{G}^{\prime}\right)
$$

In other words, any property or structure on groups that can be expressed in univalent type theory can be transported along isomorphism of groups.

## Structure Identity Principle

The Structure Identity Principle (Coquand, Aczel) says
Isomorphic mathematical structures are structurally identical; i.e. have the same structural properties.

The Structure Identity Principle holds in Univalent Foundations for many algebraic structures: isomorphic such structures have all the same (definable) properties.

