School on Univalent Mathematics

(Cortona 2022)
I. Type theory

Gianluca Amato - Università di Chieti-Pescara, Italy
slides mostly stolen from Benedikt Ahrens' ones errors definitively added by me

Foundation of Mathematics

By the name foundations of mathematics we mean the study of formal systems that allows us to formalize much if not all of mathematics.

There are several approaches to the foundations of mathematics, which we may mostly divide in two big families:

- set theories;
- type theories.

Set theories

- everything is a set;
- naive set-theory is the de-facto standard for most mathematicians not interested in the foundations of mathematics;
- Example:
a function from A to B is a subset of $A \times B$ such that ...

Type theories

- everything is a type or a term (program) of a given type;
- Example: a function from A to B is a type, denoted by $A \rightarrow B$;
- Example: the costant function which maps each element of A to the constant b of type B is the term $\lambda(x: A) . b$ of type $A \rightarrow B$;
- all type theories contains λ-calculus at their core (a functional programming language) with the infrastructure for writing mathematical proofs;
- in some type theories, to each proposition P corresponds a type P, and proofs of P are terms of type P (propositions as types).

Martin-Löf type theory

In this course we will work in the type theory introduced by Per Martin-Löf. Its main characteristics:

- propositions as types;
- dependent types and functions: a type may depend on a element (term) of an other type:
- type $\operatorname{Vect}(n)$ of vectors of length n;
- concatenate $: \prod_{m, n: \operatorname{Nat}} \operatorname{Vect}(m) \rightarrow \operatorname{Vect}(n) \rightarrow \operatorname{Vect}(m+n)$;
- tail $: \prod_{n: N a t} \operatorname{Vect}(1+n) \rightarrow \operatorname{Vect}(n)$;
- all functions are total and computable;

In the following we use the term "type theory" to denote the Martin-Löf type theory.

Multiple interpretations of type theory

There are two basic interpretation of types and terms which help intuition.

Set based a type A is a set; a term a of type A is an element of the set A.

Logic based a type A is a proposition (or a predicate); a term a of type A is a proof of A.

More complex interpretations (such as types as simplicial sets) are at the basis of the Univalence Foundations of mathematics.

We will not discuss these interpretations in our lecture.

Outline

(1) Non-dependent types
(2) Dependent types
(3) More on propositions as types
(4) Problem session

Outline

(1) Non-dependent types

2 Dependent types
(3) More on propositions as types

4 Problem session

Our goal

Our main goal: to write well-typed terms

In type theory, both the activities of

- defining a mathematical object;
- proving a mathematical statement; are done by writing well-typed terms.

We hence need to understand the typing rules of type theory. These rules are expressed in a logical language consisting of "judgements" and "inference rules".

Syntax of type theory

Fundamental: judgment

$$
\text { context } \vdash \text { conclusion }
$$

Contexts \& judgments
Γ
sequence of variable declarations
$\left(x_{1}: A_{1}\right),\left(x_{2}: A_{2}\left(x_{1}\right)\right), \ldots,\left(x_{n}: A_{n}\left(\vec{x}_{i}\right)\right)$
$\Gamma \vdash A$
$\Gamma \vdash a: A$
$\Gamma \vdash A \equiv B$
$\Gamma \vdash a \equiv b: A$
A is well-formed type in context Γ
term a is well-formed and of type A
types A and B are convertible
a is convertible to b in type A

$$
(x: \text { Nat }),(f: \text { Nat } \rightarrow \text { Bool }) \vdash f(x): \text { Bool }
$$

An example

Suppose you want to write a function isZero? of type Nat \rightarrow Bool. You start out with

$$
\begin{aligned}
& \text { isZero? : Nat } \rightarrow \text { Bool } \\
& \text { isZero?(n) }:=\text { ?? }
\end{aligned}
$$

At this point, you need to write a term b (possibly containing n) such that

$$
(n: \text { Nat }) \vdash b: \text { Bool }
$$

Inference rules and derivations (1)

Inference rules allow to derive correct judgments from already proved judgments.

An inference rule is an implication of judgments,

$$
\begin{array}{ccc}
J_{1} & J_{2} & \ldots \\
\hline & J
\end{array}
$$

e.g.,

$$
\frac{\Gamma \vdash f: \text { Nat } \rightarrow \text { Bool } \quad \Gamma \vdash n: \text { Nat }}{\Gamma \vdash f(n): \text { Bool }} \quad \frac{\Gamma \vdash a \equiv b: A}{\Gamma \vdash b \equiv a: A}
$$

Inference rules and derivations (2)

A derivation of a judgment is a tree of inference rules, e.g., writing Γ for the context ($f:$ Nat \rightarrow Bool), ($n:$ Nat)

$$
\frac{\Gamma \vdash f: \text { Nat } \rightarrow \text { Bool } \overline{\Gamma \vdash n: \text { Nat }}}{\Gamma \vdash f(n): \text { Bool }}
$$

Inference rules and derivations (3)

We will be more informal in this presentation:

- We sometimes omit the context when writing judgments.
- We will use english for writing inference rules.
e.g., by writing

$$
\text { " If } a \equiv b, \text { then } b \equiv a "
$$

instead of

$$
\frac{\Gamma \vdash a \equiv b: A}{\Gamma \vdash b \equiv a: A}
$$

Important facts about judgments

- term a does not exist independently of its type A
- If $x: A$ and $A \equiv B$ then $x: B$;
- a well-formed term a has exactly one type up to \equiv (whereas an element a can be member of many different sets)
$\bullet \equiv$ is a congruence, e.g., if $a \equiv a^{\prime}$ and $f \equiv f^{\prime}$, then $f(a) \equiv f^{\prime}\left(a^{\prime}\right)$.

Declaring types \& terms

Any type and its terms are declared by giving 4 (groups of) rules:

Formation a way to construct a new type

Introduction way(s) to construct canonical terms of that type
Elimination way(s) to use a term of the new type to construct terms

Conversion what happens when one does Introduction followed by Elimination

The type of functions $A \rightarrow B$

Formation If A and B are types, then $A \rightarrow B$ is a type (sets: set of functions from A to B)
(logics: A implies B)

Introduction If $x: A \vdash b: B$, then $\vdash \lambda(x: A) . b: A \rightarrow B$ (b may conain some occurrences of x)

Elimination If $f: A \rightarrow B$ and $a: A$, then $f(a): B$
Conversion $(\lambda(x: A) . b)(a) \equiv b[x / a]$
(substitution $b[x / a]$ is built-in and not part of the language of terms, it means b with every occurrence of x replaced by a, possibly renaming bound variables)

Conversion and computation

The judgment

$$
(\lambda(x: A) \cdot b)(a) \equiv b[a / x]
$$

(and others we will see later) may be given a computational meaning by orienting the equivalence from left to right:

$$
(\lambda(x: A) . b)(a) \Longrightarrow b[a / x]
$$

Rewriting terms according to \Longrightarrow gives us an algorithm that

- always terminates;
- transforms every term to a normal form;
- may be used to decide whether two terms are convertible.

The singleton type

Formation $\mathbf{1}$ is a type
(sets: a one-element set $\{\mathrm{t}\}$)
(logic: the true proposition T)

Introduction $\mathrm{t}: \mathbf{1}$
(sets: the only element o $\mathbf{1}$)
(logic: the trivial proof that T is true)
Elimination If $x: \mathbf{1}$ and C is a type and $c: C$, then $\operatorname{rec}_{1}(C, c, x): C$ (rec ${ }_{1}$ is called a recursor)
(rec ${ }_{1}$ is not very useful until we introuce dependent types)
Conversion $\operatorname{rec}_{1}(C, c, t) \equiv c$

Booleans

Exercise: Define the type of boolean values, with two elements.

Formation

Introduction

Elimination

Conversion

Booleans

Formation Bool is a type
(sets: a two element set \{true, false\})
Introduction true : Bool, false: Bool
Elimination If x : Bool and C is a type and $c, c^{\prime}: C$, then $\operatorname{rec}_{\text {Bool }}\left(C, c, c^{\prime}, x\right): C$ (interpretation: if $\mathrm{x}=$ true then c else c^{\prime})

Conversion $\operatorname{rec}_{\text {Bool }}\left(C, c, c^{\prime}\right.$, true $) \equiv c$ $\operatorname{rec}_{\text {Bool }}\left(C, c, c^{\prime}\right.$, false $) \equiv c^{\prime}$

The empty type

Formation o is a type
(sets: the empty set)
(logic: the false proposition)

Introduction

Elimination If $x: \mathbf{o}$ and C is a type, then $\operatorname{rec}_{\mathbf{o}}(C, x): C$ (logic: from falsehood, anything)

Conversion

- Exercise: Define a function of type $\mathbf{o} \rightarrow$ Bool.

The type of natural numbers

Formation Nat is a type (sets: the set of natural numbers)

Introduction o: Nat if n : Nat, then $S(n):$ Nat

Elimination If C is a type and $c_{\mathrm{o}}: C$ and $c_{s}: C \rightarrow C$ and x : Nat then $\operatorname{rec}_{\mathrm{Nat}}\left(C, c_{\mathrm{o}}, c_{s}, x\right): C$ $\left(\begin{array}{ll}\operatorname{rec}_{\text {Nat }}\left(C, c_{0}, c_{s}, x\right) & =\left\{\begin{array}{ll}c_{0} & \text { if } x=0 ; \\ c_{s}\left(\operatorname{rec}_{\text {Nat }}\left(C, c_{0}, c_{s}, y\right)\right) & \text { if } x=S(y)\end{array}\right), ~(r)\end{array}\right.$

Conversion $\operatorname{rec}_{\text {Nat }}\left(C, c_{0}, c_{s}, o\right) \equiv c_{\mathrm{o}}$ $\operatorname{rec}_{\text {Nat }}\left(C, c_{0}, c_{s}, S(n)\right) \equiv c_{s}\left(\operatorname{rec}_{\text {Nat }}\left(C, c_{0}, c_{s}, n\right)\right)$

Using the nat recursor

Exercise: Define a function isZero? : Nat \rightarrow Bool

Using the nat recursor

Exercise: Define a function isZero? : Nat \rightarrow Bool
Solution:

$$
\text { isZero? }:=\lambda(x: \text { Nat }) \cdot \text { rec }_{\mathrm{Nat}}(\text { Bool, true, } \lambda(x: \text { Bool }) \text {.false, } x)
$$

whose meaning is

$$
\begin{aligned}
\text { isZero? }:=\lambda(x: \text { Nat }) . \text { if } x= & o \text { then true } \\
& \text { else }(\lambda(x: \text { Bool }) . \text { false }) \text { (isZero? }(x-1))
\end{aligned}
$$

Pattern matching

- Programming in terms of the recursors rec is cumbersome.
- Equivalently, we can specify functions by pattern matching: A function $A \rightarrow C$ is specified completely if it is specified on the canonical elements of A.

$$
\begin{aligned}
& \text { isZero? : Nat } \rightarrow \text { Bool } \\
& \text { isZero?(o) }:=\text { true } \\
& \text { isZero?(S(n)) }:=\text { false }
\end{aligned}
$$

- The "specifying equations" correspond to the computation rules.

Pattern matching for $\mathbf{0}, \mathbf{1}$, Bool

How to define a map

- o $\rightarrow A$

Nothing to do

- $1 \rightarrow A$

$$
f(\mathrm{t}):=\text { ?? }: A
$$

- f : Bool $\rightarrow A$

$$
\begin{aligned}
& f(\text { true }):=? ?: A \\
& f(\text { false }):=? ?: A
\end{aligned}
$$

The type of pairs $A \times B$

Formation If A and B are types, then $A \times B$ is a type (sets: Cartesian product of sets A and B) (logic: $A \wedge B$)

Introduction If $a: A$ and $b: B$, then $\langle a, b\rangle: A \times B$ (logic: given proofs a, b of A and B, we get a proof of $A \wedge B$)

Elimination If C is a type, and $p: A \rightarrow(B \rightarrow C)$ and $t: A \times B$, then $\operatorname{rec}_{\times}(A, B, C, p, t): C$

Conversion $\operatorname{rec}_{\times}(A, B, C, p,\langle a, b\rangle) \equiv p(a)(b)$

Exercises

- Define fst : $A \times B \rightarrow A$ and snd: $A \times B \rightarrow B$
- using the eliminator
- by pattern matching
- Compute $\operatorname{fst}(\langle a, b\rangle)$ and $\operatorname{snd}(\langle a, b\rangle)$

Exercises

- Define fst : $A \times B \rightarrow A$ and snd : $A \times B \rightarrow B$
- using the eliminator

$$
\mathrm{fst}:=\lambda(t: A \times B) \cdot \operatorname{rec}_{\times}(A, B, A, \lambda(x: A) \cdot \lambda(y: B) \cdot x, t)
$$

- by pattern matching

$$
\operatorname{fst}(\langle a, b\rangle):=a
$$

- Compute $\operatorname{fst}(\langle a, b\rangle)$ and $\operatorname{snd}(\langle a, b\rangle)$

Exercises

- Given types A and B, write a function swap of type $A \times B \rightarrow B \times A$.
- What is the type of $\operatorname{swap}(\langle t$, false $\rangle)$? Compute the result.

Exercises

- Given types A and B, write a function swap of type $A \times B \rightarrow B \times A$.

Solution

$$
\operatorname{swap}:=\lambda(x: A \times B) \cdot(\operatorname{snd}(x), \mathrm{fst}(x))
$$

- What is the type of $\operatorname{swap}(\langle t$, false $\rangle)$? Compute the result.

Solution

swap((t, false)) : Bool $\times 1$

$$
\begin{aligned}
\operatorname{swap}(\langle\mathrm{t}, \mathrm{false}\rangle) & \equiv\langle\operatorname{snd}(\langle\mathrm{t}, \text { false }\rangle), \mathrm{fst}(\langle\mathrm{t}, \text { false }\rangle)\rangle \\
& \equiv\langle\text { false }, \mathrm{t}\rangle
\end{aligned}
$$

Associativity of cartesian product

Exercise
Write a function assoc of type $(A \times B) \times C \rightarrow A \times(B \times C)$.

Associativity of cartesian product

Exercise

Write a function assoc of type $(A \times B) \times C \rightarrow A \times(B \times C)$.

Solution

$$
\text { assoc }:=\lambda(x:(A \times B) \times C) \cdot\langle\operatorname{fst}(f s t(x)),\langle\operatorname{snd}(f s t(x)), \operatorname{snd}(x)\rangle\rangle
$$

or

$$
\operatorname{assoc}((x, y), z):=(x,(y, z))
$$

Outline

(1) Non-dependent types
(2) Dependent types

3 More on propositions as types

4 Problem session

Type dependency

In particular: dependent type B over A

$$
x: A \vdash B(x)
$$

"family B of types indexed by A "

- Example: type of vectors (with entries from, e.g., Bool) of length n

$$
n: \text { Nat } \vdash \operatorname{Vect}(n) \quad\left(=\text { Bool }^{n}\right)
$$

- A type can depend on several variables

Dependent types in pictures

Universes

Universes

- There is also a type Type. Its elements are types, A : Type;
- The judgment $x: A \vdash B$ may be viewed as $x: A \vdash B:$ Type;
- ($n:$ Nat), (A : Type) $\vdash \operatorname{Vect}(A, n):$ Type.

What is the type of Type?

- Actually, hierarchy $\left(\text { Type }_{i}\right)_{i \in I}$ to avoid paradoxes.

$$
\text { Type }_{0}: \text { Type }_{1}: \text { Type }_{2}: \cdots
$$

- But we ignore this for the most part, and only write Type.

The type of dependent functions $\prod_{x: A} B$

Formation If $x: A \vdash B(x)$, then $\prod_{x: A} B(x)$ is a type. (sets: mapping each $x \in A$ to an element of $B(x)$) (logic: $\forall x: A, B(x)$)

Introduction If $(x: A) \vdash b: B$, then $\lambda(x: A) \cdot b: \prod_{x: A} B$.
Elimination If $f: \prod_{x: A} B$ and $a: A$, then $f(a): B[x / a]$
Conversion $(\lambda(x: A) \cdot b)(a) \equiv b[x / a]$
The case $A \rightarrow B$ is a special case, where B does not depend on $x: A$

A dependent function in pictures

$f: \prod_{x: A} B(x)$

B

Pattern matching for $\mathbf{0}, \mathbf{1}$, Bool

To specify a dependent function

- $f: \prod_{x: 0} A(x)$

Nothing to do

- $f: \prod_{x: 1} A(x)$

$$
f(\mathrm{t}):=? ?: A(\mathrm{t})
$$

- $f: \prod_{x: \operatorname{Bool}} A(x)$

$$
\begin{aligned}
& f(\text { true }):=? ?: A(\text { true }) \\
& f(\text { false }):=? ?: A(\text { false })
\end{aligned}
$$

The type of dependent pairs $\sum_{x: A} B$

Formation If $x: A \vdash B(x)$, then $\sum_{x: A} B(x)$ is a type (sets: disjoint union $\amalg_{x: a} B(x)$)
(logic: $\exists x: A, B(x)$)
Introduction If $a: A$ and $b: B[x / a]$, then $\langle a, b\rangle: \sum_{x: A} B$
Elimination ...
Conversion ...
The case $A \times B$ is a special case, where B does not depend on $x: A$

Σ-type in pictures

A

The identity type

Formation If $a: A$ and $b: A$, then $\operatorname{Id}_{A}(a, b)$ is a type (logic: the equality predicate $a=b$)

Introduction If $a: A$, then $\operatorname{refl}(a): \operatorname{ld}_{A}(a, a)$
(the trivial proof that a is equal to itself)

Elimination If

$$
\begin{aligned}
& (x, y: A),\left(p: \operatorname{ld}_{A}(x, y)\right) \vdash C(x, y, p) \\
& \text { and } \\
& (x: A) \vdash t(x): C(x, x, \operatorname{refl}(x))
\end{aligned}
$$

then

$$
(x, y: A),\left(p: \operatorname{ld}_{A}(x, y)\right) \vdash \operatorname{ind}_{\mathrm{Id}}(t ; x, y, p): C(x, y, p)
$$

Conversion ...

Exercise

- Write a term of type $\operatorname{ld}_{A}($ snd $(\langle\mathrm{t}$, false $\rangle)$, false $)$.
(Hint: remember the important facts about \equiv)

Exercise

- Write a term of type $\operatorname{ld}_{A}($ snd $(\langle t$, false $\rangle)$, false $)$.
(Hint: remember the important facts about \equiv)

Solution

We have

$$
\operatorname{snd}(\langle\mathrm{t}, \text { false }\rangle) \equiv \text { false }
$$

and hence

$$
\operatorname{ld}_{A}(\text { snd }(\mathrm{t}, \text { false }), \text { false }) \equiv \operatorname{ld}_{A}(\text { false }, \text { false })
$$

Since

$$
\text { refl(false) : } \mathrm{Id}_{A}(\text { false, false })
$$

we also have

$$
\operatorname{refl}(f a l s e): I d_{A}(\text { snd(t, false), false) }
$$

The elimination principle for Id_{A}

- By pattern matching, to specify a map on a family of identities $\operatorname{Id}_{A}(x, y)$, it suffices to specify its image on $\operatorname{refl}(x)$ for some x.
- For instance, to define

$$
\operatorname{sym}: \prod_{x, y: A} \operatorname{Id}(x, y) \rightarrow \operatorname{Id}(y, x)
$$

it suffices to specify its image on $(x, x, \operatorname{refl}(x))$

$$
\operatorname{sym}(x, x, \operatorname{refl}(x)):=
$$

The elimination principle for Id_{A}

- By pattern matching, to specify a map on a family of identities $\operatorname{Id}_{A}(x, y)$, it suffices to specify its image on $\operatorname{refl}(x)$ for some x.
- For instance, to define

$$
\operatorname{sym}: \prod_{x, y: A} \operatorname{Id}(x, y) \rightarrow \operatorname{Id}(y, x)
$$

it suffices to specify its image on $(x, x, \operatorname{refl}(x))$

$$
\operatorname{sym}(x, x, \operatorname{refl}(x)):=\operatorname{refl}(x)
$$

More about identities

Exercise: Using pattern matching, construct a term trans of type

$$
\prod_{x, y: A} \operatorname{Id}(x, y) \rightarrow \prod_{z: A} \operatorname{Id}(y, z) \rightarrow \operatorname{Id}(x, z)
$$

More about identities

Exercise: Using pattern matching, construct a term trans of type

$$
\begin{gathered}
\prod_{x, y: A} \operatorname{Id}(x, y) \rightarrow \prod_{z: A} \operatorname{Id}(y, z) \rightarrow \operatorname{Id}(x, z) \\
\quad \operatorname{trans}(x, x, \operatorname{ref|}(x), z, p):=p
\end{gathered}
$$

Transport

Exercise

Given $x: A \vdash B(x)$, define a function of type

$$
\operatorname{transport}^{B}: \prod_{x, y: A} \mathrm{Id}(x, y) \rightarrow B(x) \rightarrow B(y)
$$

Transport

Exercise

Given $x: A \vdash B(x)$, define a function of type

$$
\operatorname{transport}^{B}: \prod_{x, y: A} \mathrm{Id}(x, y) \rightarrow B(x) \rightarrow B(y)
$$

Solution

transport ${ }^{B}(x, x, \operatorname{refI}(x), b):=b$

Exercise: swap is involutive

Exercise

Given types A and B, write a function of type

$$
\prod_{t: A \times B} \mathrm{Id}(\operatorname{swap}(\operatorname{swap}(t)), t)
$$

Exercise: swap is involutive

Exercise

Given types A and B, write a function of type

$$
\prod_{t: A \times B} \mathrm{Id}(\operatorname{swap}(\operatorname{swap}(t)), t)
$$

Solution

$$
f(\langle a, b\rangle):=\operatorname{refl}(\langle a, b\rangle)
$$

Why is f a solution?

The disjoint sum $A+B$

Formation If A and B are types, then $A+B$ is a type (sets: disjoint union)
(logic: constructive disjunction $A \vee B$)
Introduction If $a: A$, then $\operatorname{inl}(a): A+B$ If $b: B$, then $\operatorname{inr}(b): A+B$

Elimination If $f: A \rightarrow C$ and $g: B \rightarrow C$, then $\operatorname{rec}_{+}(C, f, g): A+B \rightarrow C$

Conversion $\operatorname{rec}_{+}(C, f, g)(\operatorname{inl}(a)) \equiv f(a)$
$\operatorname{rec}_{+}(C, f, g)(\operatorname{inr}(b)) \equiv g(b)$

- Exercise: write down the dependent eliminator for $A+B$
- What is the pattern matching principle for $A+B$?

Outline

(1) Non-dependent types

2 Dependent types

3 More on propositions as types
(4) Problem session

Interpreting types as sets

Syntax	Set interpretation
A	set A
$a: A$	$a \in A$
$A \times B$	cartesian product
$A \rightarrow B$	set of functions $A \rightarrow B$
$A+B$	disjoint union $A \amalg B$
$x: A \vdash B(x)$	family B of sets indexed by A
$\sum_{x: A} B(x)$	disjoint union $\amalg_{x: A} B(x)$
$\prod_{x: A} B(x)$	dependent function
$\operatorname{ld}_{A}(a, b)$???

Interpreting types as propositions

Syntax	Logic
A	proposition A
$a: A$	a is a proof of A
$\mathbf{1}$	\top
\mathbf{o}	\perp
$A \times B$	$A \wedge B$
$A \rightarrow B$	$A \Rightarrow B$
$A+B$	$A \vee B$
$x: A \vdash B(x)$	predicate B on A
$\sum_{x: A} B(x)$	$\exists x \in A, B(x)$
$\prod_{x: A} B(x)$	$\forall x \in A, B(x)$
$\operatorname{ld}_{A}(a, b)$	equality $a=b$

- The connectives \vee and \exists thus obtained behave constructively.

Negation

Definition

$$
\neg A:=A \rightarrow \mathbf{o}
$$

Exercise

(1) Construct a term of type $A \rightarrow \neg \neg A$
(2) Try to construct a term of type $\neg \neg A \rightarrow A$

Summary: Logic in type theory

Proposition as types (also called Curry-Howard correspondence):

- propositions are types
- proofs of P are terms of type $P c d$

Hence:

- In principle, all types could be called propositions.
- To prove a proposition P means to construct a term of type P.
- In UF, only some types are called 'propositions', cf later.

Convention

For type X, we also say "Show X " or "Prove X " for "Construct a term of type X ".

true is not false

Exercise

Construct a term of type $\neg($ Id (true, false $)$).
Hint: use transport ${ }^{B}$ with a suitable $B:$ Bool \rightarrow Type

Solution

Set $B:=\operatorname{rec}_{\text {Bool }}($ Type, $, \mathbf{1}, \boldsymbol{o}):$ Bool \rightarrow Type.
Then $B($ true $) \equiv \boldsymbol{1}$ and $B($ false $) \equiv \boldsymbol{o}$. Hence

$$
\lambda p: \operatorname{ld}(\text { true, false }) . \text { transport }{ }^{B}(p, \mathrm{t}): \operatorname{Id}(\text { true, false }) \rightarrow \boldsymbol{o}
$$

Exercise: Dependent elimination rules

Write down the dependent elimination rule for
o If $x: \mathbf{o} \vdash C(x)$ is a type family and $x: \mathbf{o}$, then ind $_{\mathbf{o}}(C, x): C(x)$
1 If $x: \mathbf{1} \vdash C(x)$ is a type family and $c_{\mathrm{t}}: C(\mathrm{t})$ and $x: \mathbf{1}$, then $\operatorname{ind}_{1}(C, c, x): C(x)$
Bool If x : Bool $\vdash C(x)$ is a type family and $c_{\text {true }}: C$ (true) and $c_{\text {false }}: C($ false $)$ and x : Bool, then ind $_{\text {Bool }}\left(C, c, c^{\prime}, x\right): C(x)$

Outline

(1) Non-dependent types
(2) Dependent types

3 More on propositions as types
(4) Problem session

Problems

- Solve the exercises from the lecture.
- Define addition + of natural numbers in terms of the eliminator, and via pattern matching.
- Give a proof of $\operatorname{Id}(2+2,4)$. Explain how/why your proof works.
- Given types A, B, and C, define maps between $A \times(B+C)$ and $A \times B+A \times C$. Show that they are pointwise inverses.
- For A, B, and $P: A \rightarrow$ Type, give maps between $\sum_{x: A} B \times P(x)$ and $B \times \sum_{x: A} P(x)$. Show that they are pointwise inverses.
- Prove that, for any $x: 1, \operatorname{ld}(x, \mathrm{t})$.
- After Marco's lecture of the afternoon, try to solve them in Coq too.

