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Foundation of Mathematics

By the name foundations of mathematics we mean the study of
formal systems that allows us to formalize much if not all of
mathematics.

There are several approaches to the foundations of mathematics,
which we may mostly divide in two big families:
• set theories;
• type theories.



Set theories

• everything is a set;
• naive set-theory is the de-facto standard for most

mathematicians not interested in the foundations of
mathematics;

• Example:
a function from A to B is a subset of A× B such that . . .



Type theories

• everything is a type or a term (program) of a given type;
• Example: a function from A to B is a type, denoted by A→ B;
• Example: the costant function which maps each element of A

to the constant b of type B is the term λ(x : A).b of type A→ B;
• all type theories contains λ-calculus at their core (a functional

programming language) with the infrastructure for writing
mathematical proofs;

• in some type theories, to each proposition P corresponds a
type P, and proofs of P are terms of type P (propositions as
types).



Martin-Löf type theory

In this course we will work in the type theory introduced by Per
Martin-Löf. Its main characteristics:
• propositions as types;
• dependent types and functions: a type may depend on a

element (term) of an other type:
• type Vect(n) of vectors of length n;

• concatenate :
∏

m,n:Nat Vect(m)→ Vect(n)→ Vect(m+ n);

• tail :
∏

n:Nat Vect(1+ n)→ Vect(n);

• all functions are total and computable;

In the following we use the term “type theory” to denote the
Martin-Löf type theory.



Multiple interpretations of type theory

There are two basic interpretation of types and terms which help
intuition.

Set based a type A is a set;
a term a of type A is an element of the set A.

Logic based a type A is a proposition (or a predicate);
a term a of type A is a proof of A.

More complex interpretations (such as types as simplicial sets) are
at the basis of the Univalence Foundations of mathematics.

We will not discuss these interpretations in our lecture.
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Our goal

Our main goal: to write well-typed terms
In type theory, both the activities of
• defining a mathematical object;
• proving a mathematical statement;

are done by writing well-typed terms.

We hence need to understand the typing rules of type theory.
These rules are expressed in a logical language consisting of
“judgements” and “inference rules”.



Syntax of type theory

Fundamental: judgment

context ` conclusion

Contexts & judgments
Γ sequence of variable declarations

(x1 : A1), (x2 : A2(x1)), . . . , (xn : An(~xi))
Γ ` A A is well–formed type in context Γ
Γ ` a : A term a is well-formed and of type A
Γ ` A≡ B types A and B are convertible
Γ ` a≡ b : A a is convertible to b in type A

(x : Nat), (f : Nat→ Bool) ` f(x) : Bool



An example

Suppose you want to write a function isZero? of type Nat→ Bool.
You start out with

isZero? : Nat→ Bool
isZero?(n) := ??

At this point, you need to write a term b (possibly containing n)
such that

(n : Nat) ` b : Bool



Inference rules and derivations (1)

Inference rules allow to derive correct judgments from already
proved judgments.

An inference rule is an implication of judgments,

J1 J2 . . .
J

e.g.,

Γ ` f : Nat→ Bool Γ ` n : Nat
Γ ` f(n) : Bool

Γ ` a≡ b : A
Γ ` b≡ a : A



Inference rules and derivations (2)

A derivation of a judgment is a tree of inference rules, e.g.,
writing Γ for the context (f : Nat→ Bool), (n : Nat)

Γ ` f : Nat→ Bool Γ ` n : Nat
Γ ` f(n) : Bool



Inference rules and derivations (3)

We will be more informal in this presentation:
• We sometimes omit the context when writing judgments.
• We will use english for writing inference rules.

e.g., by writing
“ If a≡ b, then b≡ a”

instead of
Γ ` a≡ b : A
Γ ` b≡ a : A



Important facts about judgments

• term a does not exist independently of its type A

• If x : A and A≡ B then x : B;

• a well-formed term a has exactly one type up to ≡

(whereas an element a can be member of many different sets)

• ≡ is a congruence, e.g., if a≡ a′ and f ≡ f ′, then f(a)≡ f ′(a′).



Declaring types & terms

Any type and its terms are declared by giving 4 (groups of) rules:

Formation a way to construct a new type

Introduction way(s) to construct canonical terms of that type

Elimination way(s) to use a term of the new type to construct
terms

Conversion what happens when one does Introduction followed
by Elimination



The type of functions A→ B

Formation If A and B are types, then A→ B is a type
(sets: set of functions from A to B)

(logics: A implies B)

Introduction If x : A ` b : B, then ` λ(x : A).b : A→ B
(b may conain some occurrences of x)

Elimination If f : A→ B and a : A, then f(a) : B

Conversion (λ(x : A).b)(a)≡ b[x/a]
(substitution b[x/a] is built-in and not part of the
language of terms, it means b with every occurrence of x
replaced by a, possibly renaming bound variables)



Conversion and computation

The judgment

(λ(x : A).b)(a)≡ b[a/x]

(and others we will see later) may be given a computational
meaning by orienting the equivalence from left to right:

(λ(x : A).b)(a) =⇒ b[a/x]

Rewriting terms according to =⇒ gives us an algorithm that
• always terminates;
• transforms every term to a normal form;
• may be used to decide whether two terms are convertible.



The singleton type

Formation 1 is a type
(sets: a one-element set {t})

(logic: the true proposition >)

Introduction t : 1
(sets: the only element o 1)

(logic: the trivial proof that > is true)

Elimination If x : 1 and C is a type and c : C, then rec1(C, c,x) : C
(rec1 is called a recursor)

(rec1 is not very useful until we introuce dependent types)

Conversion rec1(C, c, t)≡ c



Booleans

Exercise: Define the type of boolean values, with two elements.

Formation

Introduction

Elimination

Conversion



Booleans

Formation Bool is a type
(sets: a two element set {true, false})

Introduction true : Bool, false : Bool

Elimination If x : Bool and C is a type and c, c′ : C,
then recBool(C, c, c′,x) : C
(interpretation: if x = true then c else c′)

Conversion recBool(C, c, c′, true)≡ c
recBool(C, c, c′, false)≡ c′



The empty type

Formation 0 is a type
(sets: the empty set)

(logic: the false proposition)

Introduction

Elimination If x : 0 and C is a type, then rec0(C,x) : C
(logic: from falsehood, anything)

Conversion

• Exercise: Define a function of type 0→ Bool.



The type of natural numbers

Formation Nat is a type
(sets: the set of natural numbers)

Introduction 0 : Nat
if n : Nat, then S(n) : Nat

Elimination If C is a type and c0 : C and cs : C→ C and x : Nat
then recNat(C, c0, cs,x) : C
�

recNat(C, c0, cs,x) =

¨

c0 if x = 0;

cs(recNat(C, c0, cs,y)) if x = S(y)

�

Conversion recNat(C, c0, cs,0)≡ c0
recNat(C, c0, cs,S(n))≡ cs(recNat(C, c0, cs,n))



Using the nat recursor

Exercise: Define a function isZero? : Nat→ Bool

Solution:

isZero? := λ(x : Nat).recNat(Bool, true,λ(x : Bool).false,x)

whose meaning is

isZero? := λ(x : Nat).if x = 0 then true
else (λ(x : Bool).false)(isZero?(x− 1))



Using the nat recursor

Exercise: Define a function isZero? : Nat→ Bool

Solution:

isZero? := λ(x : Nat).recNat(Bool, true,λ(x : Bool).false,x)
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isZero? := λ(x : Nat).if x = 0 then true
else (λ(x : Bool).false)(isZero?(x− 1))



Pattern matching

• Programming in terms of the recursors rec is cumbersome.
• Equivalently, we can specify functions by pattern matching:

A function A→ C is specified completely if it is specified on
the canonical elements of A.

isZero? : Nat→ Bool
isZero?(0) := true
isZero?(S(n)) := false

• The “specifying equations” correspond to the computation
rules.



Pattern matching for 0, 1, Bool

How to define a map
• 0→ A

Nothing to do
• 1→ A

f(t) := ?? : A

• f : Bool→ A

f(true) := ?? : A
f(false) := ?? : A



The type of pairs A× B

Formation If A and B are types, then A× B is a type
(sets: Cartesian product of sets A and B)

(logic: A∧ B)

Introduction If a : A and b : B, then 〈a,b〉 : A× B
(logic: given proofs a, b of A and B, we get a proof of A∧B)

Elimination If C is a type, and p : A→ (B→ C) and t : A× B, then
rec×(A,B,C,p, t) : C

Conversion rec×(A,B,C,p, 〈a,b〉)≡ p(a)(b)



Exercises

• Define fst : A× B→ A and snd : A× B→ B
• using the eliminator

fst := λ(t : A× B).rec×(A,B,A,λ(x : A).λ(y : B).x, t)

• by pattern matching

fst(〈a,b〉) := a

• Compute fst(〈a,b〉) and snd(〈a,b〉)



Exercises

• Define fst : A× B→ A and snd : A× B→ B
• using the eliminator

fst := λ(t : A× B).rec×(A,B,A,λ(x : A).λ(y : B).x, t)

• by pattern matching

fst(〈a,b〉) := a
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Exercises

• Given types A and B, write a function swap of type
A× B→ B× A.

Solution

swap := λ(x : A× B). (snd(x), fst(x))

• What is the type of swap(〈t, false〉)? Compute the result.

Solution
swap((t, false)) : Bool× 1

swap(〈t, false〉) ≡
¬

snd(〈t, false〉), fst(〈t, false〉)
¶

≡ 〈false, t〉
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Associativity of cartesian product

Exercise
Write a function assoc of type (A× B)× C→ A× (B× C).

Solution

assoc := λ(x : (A× B)× C).
¬

fst(fst(x)),



snd(fst(x)), snd(x)
�

¶

or
assoc((x,y), z) := (x, (y, z))
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Type dependency

In particular: dependent type B over A

x : A ` B(x)

“family B of types indexed by A”
• Example: type of vectors (with entries from, e.g., Bool) of

length n
n : Nat ` Vect(n) (= Booln)

• A type can depend on several variables



Dependent types in pictures

A

a

B(a)

a′

b : B(a′)



Universes

Universes
• There is also a type Type. Its elements are types, A : Type;
• The judgment x : A ` B may be viewed as x : A ` B : Type;
• (n : Nat), (A : Type) ` Vect(A,n) : Type.

What is the type of Type?
• Actually, hierarchy (Typei)i∈I to avoid paradoxes.

Type0 : Type1 : Type2 : · · ·

• But we ignore this for the most part, and only write Type.



The type of dependent functions
∏

x:AB

Formation If x : A ` B(x), then
∏

x:A B(x) is a type.
(sets: mapping each x ∈ A to an element of B(x))

(logic: ∀x : A,B(x))

Introduction If (x : A) ` b : B, then λ(x : A).b :
∏

x:A B.

Elimination If f :
∏

x:A B and a : A, then f(a) : B[x/a]

Conversion (λ(x : A).b)(a)≡ b[x/a]

The case A→ B is a special case, where B does not depend on x : A



A dependent function in pictures

f :
∏

x:A B(x)

B

A

a

f(a) : B(a)

a′

f(a′) : B(a′)



Pattern matching for 0, 1, Bool

To specify a dependent function

• f :
∏

x:0 A(x)
Nothing to do

• f :
∏

x:1 A(x)

f(t) := ?? : A(t)

• f :
∏

x:Bool A(x)

f(true) := ?? : A(true)
f(false) := ?? : A(false)



The type of dependent pairs
∑

x:AB

Formation If x : A ` B(x), then
∑

x:A B(x) is a type
(sets: disjoint union qx:aB(x))

(logic: ∃x : A,B(x))

Introduction If a : A and b : B[x/a], then 〈a,b〉 :
∑

x:A B

Elimination . . .

Conversion . . .

The case A× B is a special case, where B does not depend on x : A



Σ-type in pictures

Σx:AB(x)

A

a

B(a)

a′

(a′,b) :
∑

x:A B(x)



The identity type

Formation If a : A and b : A, then IdA(a,b) is a type
(logic: the equality predicate a= b)

Introduction If a : A, then refl(a) : IdA(a,a)
(the trivial proof that a is equal to itself)

Elimination If
(x,y : A), (p : IdA(x,y)) ` C(x,y,p)
and
(x : A) ` t(x) : C(x,x, refl(x))
then
(x,y : A), (p : IdA(x,y)) ` indId(t;x,y,p) : C(x,y,p)

Conversion . . .



Exercise

• Write a term of type IdA(snd(〈t, false〉), false).

(Hint: remember the important facts about ≡)

Solution
We have

snd(〈t, false〉)≡ false

and hence

IdA(snd(t, false), false)≡ IdA(false, false)

Since
refl(false) : IdA(false, false)

we also have
refl(false) : IdA(snd(t, false), false)



Exercise
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refl(false) : IdA(snd(t, false), false)



The elimination principle for IdA

• By pattern matching, to specify a map on a family of identities
IdA(x,y), it suffices to specify its image on refl(x) for some x.

• For instance, to define

sym :
∏

x,y:A
Id(x,y) → Id(y,x)

it suffices to specify its image on (x,x, refl(x))

sym(x,x, refl(x)) :=

refl(x)



The elimination principle for IdA

• By pattern matching, to specify a map on a family of identities
IdA(x,y), it suffices to specify its image on refl(x) for some x.

• For instance, to define
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More about identities

Exercise: Using pattern matching, construct a term trans of type
∏

x,y:A
Id(x,y)→

∏

z:A
Id(y, z)→ Id(x, z)

trans(x,x, refl(x), z,p) := p



More about identities
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x,y:A
Id(x,y)→
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trans(x,x, refl(x), z,p) := p



Transport

Exercise
Given x : A ` B(x), define a function of type

transportB :
∏

x,y:A
Id(x,y)→ B(x)→ B(y)

Solution

transportB(x,x, refl(x),b) := b



Transport

Exercise
Given x : A ` B(x), define a function of type

transportB :
∏

x,y:A
Id(x,y)→ B(x)→ B(y)

Solution

transportB(x,x, refl(x),b) := b



Exercise: swap is involutive

Exercise
Given types A and B, write a function of type

∏

t:A×B
Id(swap(swap(t)), t)

Solution

f(〈a,b〉) := refl(〈a,b〉)

Why is f a solution?



Exercise: swap is involutive

Exercise
Given types A and B, write a function of type

∏

t:A×B
Id(swap(swap(t)), t)

Solution

f(〈a,b〉) := refl(〈a,b〉)

Why is f a solution?



The disjoint sum A+ B

Formation If A and B are types, then A+ B is a type
(sets: disjoint union)

(logic: constructive disjunction A∨ B)

Introduction If a : A, then inl(a) : A+ B
If b : B, then inr(b) : A+ B

Elimination If f : A→ C and g : B→ C, then
rec+(C, f ,g) : A+ B→ C

Conversion rec+(C, f ,g)(inl(a))≡ f(a)
rec+(C, f ,g)(inr(b))≡ g(b)

• Exercise: write down the dependent eliminator for A+ B
• What is the pattern matching principle for A+ B?
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Interpreting types as sets

Syntax Set interpretation

A set A
a : A a ∈ A
A× B cartesian product
A→ B set of functions A→ B
A+ B disjoint union Aq B
x : A ` B(x) family B of sets indexed by A
∑

x:A B(x) disjoint union qx:AB(x)
∏

x:A B(x) dependent function
IdA(a,b) ???



Interpreting types as propositions

Syntax Logic

A proposition A
a : A a is a proof of A
1 >
0 ⊥
A× B A∧ B
A→ B A⇒ B
A+ B A∨ B
x : A ` B(x) predicate B on A
∑

x:A B(x) ∃x ∈ A,B(x)
∏

x:A B(x) ∀x ∈ A,B(x)
IdA(a,b) equality a= b

• The connectives ∨ and ∃ thus obtained behave constructively.



Negation

Definition

¬A := A→ 0

Exercise
1 Construct a term of type A→¬¬A
2 Try to construct a term of type ¬¬A→ A



Summary: Logic in type theory

Proposition as types (also called Curry-Howard correspondence):
• propositions are types
• proofs of P are terms of type Pcd

Hence:
• In principle, all types could be called propositions.
• To prove a proposition P means to construct a term of type P.
• In UF, only some types are called ‘propositions’, cf later.

Convention
For type X, we also say “Show X” or “Prove X” for “Construct a
term of type X”.



true is not false

Exercise
Construct a term of type ¬(Id(true, false)).

Hint: use transportB with a suitable B : Bool→ Type

Solution
Set B := recBool(Type, 1,0) : Bool→ Type.

Then B(true)≡ 1 and B(false)≡ 0. Hence

λp : Id(true, false).transportB(p, t) : Id(true, false)→ 0



Exercise: Dependent elimination rules

Write down the dependent elimination rule for
0 If x : 0 ` C(x) is a type family and x : 0, then

ind0(C,x) : C(x)
1 If x : 1 ` C(x) is a type family and ct : C(t) and x : 1,

then ind1(C, c,x) : C(x)
Bool If x : Bool ` C(x) is a type family and ctrue : C(true)

and cfalse : C(false) and x : Bool, then
indBool(C, c, c′,x) : C(x)
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Problems

• Solve the exercises from the lecture.
• Define addition + of natural numbers in terms of the

eliminator, and via pattern matching.
• Give a proof of Id(2+ 2,4). Explain how/why your proof

works.
• Given types A, B, and C, define maps between A× (B+ C) and

A× B+ A× C. Show that they are pointwise inverses.
• For A, B, and P : A→ Type, give maps between

∑

x:A B× P(x)
and B×

∑

x:A P(x). Show that they are pointwise inverses.
• Prove that, for any x : 1, Id(x, t).
• After Marco’s lecture of the afternoon, try to solve them in Coq

too.
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