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This talk

I What are univalent categories?

I How to construct univalent categories?

Note on terminology: during this talk, I use terminology from
UniMath (different from HoTT book).
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Categories in Univalent Foundations

Definition (Precategory)

A precategory C consists of

I A type C0 of objects;

I For x , y : C0 a type C1(x , y) of morphisms;

I For x : C0 an identity morphism idx : C1(x , x);

I For x , y , z : C0 and f : C1(x , y) and g : C1(y , z), a
composition f · g : C1(x , z)

such that

I f · idx = f ;

I idy ·f = f ;

I f · (g · h) = (f · g) · h.
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Categories in Univalent Foundations

I Equality is proof relevant in UF.

I Precategories can have ’higher’ structure given by the paths.

I Eg, the 1-cells are morphisms, 2-cells are equalities between
morphisms.

I For categories, we want this to collapse.
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Categories in Univalent Foundations

Definition (Category)

A category C consists of

I A type C0 of objects;

I For x , y : C0 a set C1(x , y) of morphisms;

I For x : C0 an identity morphism idx : C1(x , x);

I For x , y , z : C0 and f : C1(x , y) and g : C1(y , z), a
composition f · g : C1(x , z)

such that

I f · idx = f ;

I idy ·f = f ;

I f · (g · h) = (f · g) · h.

(Recall: a set is a type for which equality is proof irrelevant)
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Examples of Categories

I The category SET of sets and functions

I The category of pointed sets and point preserving maps

I The category of monoids and homomorphisms
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Towards Univalent Categories: Isomorphisms

Definition
A morphism f : C1(x , y) is an isomorphism if the map
λ(g : C1(y , z)), f · g is an equivalence for every z : C0.
We denote the type of isomorphisms from X to Y by X ∼= Y .

Note:

I We can find inverses.

I Being an isomorphism is a proposition

I idx is an isomorphism

In UniMath: is iso
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Towards Univalent Categories: Isomorphisms

Alternatively, we can define

Definition
A morphism f : C1(x , y) is an isomorphism if we have g : C1(y , x)
such that f · g = idx and g · f = idy .

Note that these definitions are equivalent for categories.
In UniMath: z iso.
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Univalent Categories

Definition (Univalence Axiom)

I For all types X ,Y we have a map
idtoeq X Y : X = Y → X ' Y .

I UA: the map X = Y → X ∼= Y is an equivalence.

Definition (Univalent Categories)

Let C be a category.

I For all objects x , y : C0 we have a map
idtoisox ,y : x = y → x ∼= y .

I A category C is univalent if for all x , y : C0 the map idtoisox ,y
is an equivalence.
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What’s so good about univalent categories?

I Nice properties: initial objects are unique (exercise)

I It’s the “right” notion of category in univalent foundations.

I In the simplicial set interpretation, univalent categories
correspond to actual categories.
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SET is Univalent

To prove SET is univalent, we factor idtoiso as follows.

x = y
idtoisox,y

//

'
$$

x ∼= y

x ' y

'

::

Hence, idtoiso is equal to an equivalence and thus an equivalence.
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What about Monoids?

I Is monoids a univalent category?

I Monoids have a more complicated structure, which makes a
direct proof harder.

I We need machinery to make such proofs more manageable.

I For this, we use displayed categories
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Displayed Categories, The Idea

I Suppose, we have a category C.

I A displayed category D represents “structure” or “properties”
to be added to C.

I Displayed categories give rise to a total category
∫
D

I The objects of
∫
D are pairs of x : C0 with the extra structure.

I Furthermore, we have a projection (forgetful functor) from the
total category to C.

I Goal of displayed categories: reason about the total category.

13/27



Displayed Categories, The Data

Definition
A displayed category D over C consists of

I For each x : C0 a type Dx
0 of objects over x .

I For each f : C1(x , y), x : Dx
0 and y : Dy

0 a set Df
1(x , y) of

morphisms over f .

I For each x : C0 and x : Dx
0 an identity idx : Didx

1 (x , x).

I For f : C1(x , y), g : C1(y , z), f : Df
1(x , y). and g : Dg

1 (y , z), a

composition f · g : Df ·g
1 (x , z).

What about the laws?
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Displayed Categories, Towards The Laws

Let’s try to write the right unitality law.
Suppose f : Df

1(x , y). Then

f · idy : Df ·idy
1 (x , y)

Hence, the law f = f · idy does not type check.

Solution: use transport. Laws become dependent equalities.
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Displayed Categories, The Laws

Suppose, f , g : C1(x , y) and p : f = g . Then

transportλh,D
h
1(x ,y) p : Df

1(x , y)→ Dg
1 (x , y)

Recall that
f : Df

1(x , y)

f · idy : Df ·idy
1 (x , y)

So, it suffices to find a path f = f · idy .
This is one of the axioms of categories.
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The Total Category

Definition
Let D be a displayed category over C. Then we define the total
category

∫
D to be the category for which

I objects are pairs x : C0 and x : Dx
0

I morphisms from (x , x) to (y , y) are pairs f : C1(x , y) and
f : Df

1(x , y)

Definition
We have a projection functor π1 :

∫
D −→ C . It sends (x , x) to x

and (f , f ) to f .
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Examples of Displayed Categories: Pointed Sets

Define a displayed category P over SET:

I Objects over X are elements x : X

I Morphisms over f : X → Y from x : X to y : Y are paths
f x = y

I Morphism over idX is a path idX x = x (reflexivity)

The total category
∫
P is the category of pointed sets.

Objects: pair of a set X and x : X . Morphisms: point preserving
maps.
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Examples of Displayed Categories: Monoids

Define a displayed category over SET

I Objects over X are monoid structures

I Morphisms over f are proofs that f is a homomorphism

The total category is the category of monoids.
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Constructions with Displayed Categories

Some constructions which allow building displayed categories
modularly.

I The full subcategory is a displayed category

I We can take the product of displayed categories
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A Nicer Construction of the Category of Monoids

Note: displayed categories can be layered.

I Start with the category of sets.

I Define a displayed category P on sets. Objects over X are
points.

I Define a displayed category M on sets. Objects over X are
maps X → X .

I This gives a displayed category P ×M over sets (the product)

I Call its total category E .

I Objects of E are pairs (X , (e, f )) with e : X and f : X → X

I Define a displayed category M over E . Objects over
(X , (e, f )) are proofs that it’s a monoid.

I Then the total category of M is the category of monoids.

Untangling (break down in small parts) and stratification (layers)
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Towards Displayed Univalence: Displayed Isomorphisms

Definition
Let D be a displayed category over C and suppose, f is an
isomorphism with inverse g . We say f : Df

1(x , y) is a (displayed)
isomorphism if there is g : Dg

1 (y , x) which are mutual inverses
(again as dependent equalities).
We write x ∼=f y for the type of displayed isomorphisms over f .
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Displayed Univalence

I Again the identity idx is an isomorphism

I By path induction, we get for p : x = y a map

dispidtoisox ,y : x =p y → x ∼=idtoisox,y p y

I We say D is displayed univalent if dispidtoiso is an
equivalence.
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Main Theorem

Theorem
If C is univalent and D is displayed univalent, then

∫
D is univalent.

24/27



Examples of Displayed Univalent Categories

I The displayed category P of pointed sets is displayed
univalent and thus the category of pointed sets is univalent.

I The displayed category P of monoids is displayed univalent
and thus the category of monoids is univalent.
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Conclusion

Take away message:

I Displayed categories are a convenient way to modularly
construct univalent categories.

I Work with small “edible” pieces.

In the exercises:

I Study univalent categories more closely

I Define monoids as a displayed category
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