
Set-level mathematics

Joj Ahrens

UniMath School, Birmingham, UK, April 2019



Outline

1 Sets in UniMath

2 How to show that something is (not) a set?

3 Subsets and quotients

4 Set-level mathematics



Outline

1 Sets in UniMath

2 How to show that something is (not) a set?

3 Subsets and quotients

4 Set-level mathematics



Definition of set

iscontr(X ) :=
∑
x :X

∏
y :X

x = y

isaprop(X ) :=
∏
x ,y :X

x = y

isaset(X ) :=
∏
x ,y :X

isaprop(x = y)

A set is a type whose path types are all propositions.



Definition of h-Levels

isofhlevel(n,X ) : Nat→ U → hProp

isofhlevel(0,X ) := iscontr(X )

isofhlevel(S(n),X ) :=
∏

x ,x ′:X

isofhlevel(n, x = x ′)

Exercise (∏
X :U

isaprop(X )

)
= isofhlevel(1,X )

Hence:

A set is a type of hlevel 2.



Definition of h-Levels

isofhlevel(n,X ) : Nat→ U → hProp

isofhlevel(0,X ) := iscontr(X )

isofhlevel(S(n),X ) :=
∏

x ,x ′:X

isofhlevel(n, x = x ′)

Exercise (∏
X :U

isaprop(X )

)
= isofhlevel(1,X )

Hence:

A set is a type of hlevel 2.



Definition of h-Levels

isofhlevel(n,X ) : Nat→ U → hProp

isofhlevel(0,X ) := iscontr(X )

isofhlevel(S(n),X ) :=
∏

x ,x ′:X

isofhlevel(n, x = x ′)

Exercise (∏
X :U

isaprop(X )

)
= isofhlevel(1,X )

Hence:

A set is a type of hlevel 2.



Topological intuition

Recall:

• Each type X is to be a thought of a space

• For two points a, b : X , the type a =X b is the space of paths
from a to b

Fact (from topology)

A (“nice”) space all of whose path spaces are contractible is
(homotopy-)equivalent to a discrete space.

This can be made more precise using the model in simplicial sets.



Topological intuition

Recall:

• Each type X is to be a thought of a space

• For two points a, b : X , the type a =X b is the space of paths
from a to b

Fact (from topology)

A (“nice”) space all of whose path spaces are contractible is
(homotopy-)equivalent to a discrete space.

This can be made more precise using the model in simplicial sets.



Closure properties

• ∑
x :A B(x) is a set if A and all B(x) are

• A× B is a set if A and B are

• ∏
x :A B(x) is a set if all B(x) are

• A→ B is a set if B is

• Any property is a set

Exercise

Do you know

• a type that is a set?

• a type for which you don’t know (yet) whether it is a set?



Closure properties

• ∑
x :A B(x) is a set if A and all B(x) are

• A× B is a set if A and B are

• ∏
x :A B(x) is a set if all B(x) are

• A→ B is a set if B is

• Any property is a set

Exercise

Do you know

• a type that is a set?

• a type for which you don’t know (yet) whether it is a set?



What are sets good for?

• Most “traditional” mathematics can be done in UniMath with
sets (groups, rings, topological spaces, etc.)

• Categories or the type of all groups (rings, etc.) have h-level 3.

• Higher category theory and synthetic homotopy theory require
higher types.



What are sets good for?

• Most “traditional” mathematics can be done in UniMath with
sets (groups, rings, topological spaces, etc.)

• Categories or the type of all groups (rings, etc.) have h-level 3.

• Higher category theory and synthetic homotopy theory require
higher types.



What are sets good for?

• Most “traditional” mathematics can be done in UniMath with
sets (groups, rings, topological spaces, etc.)

• Categories or the type of all groups (rings, etc.) have h-level 3.

• Higher category theory and synthetic homotopy theory require
higher types.



Outline

1 Sets in UniMath

2 How to show that something is (not) a set?

3 Subsets and quotients

4 Set-level mathematics



Decidable equality

Definition

A type X is decidable if we can write a term of type

X + ¬X

Definition

A type X has decidable path-equality if we can write a term of
type ∏

x ,x ′:A

(x = x ′) + ¬(x = x ′)

(that is, if all its paths types are decidable)



Hedberg’s theorem

Theorem

If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.

Note

Hedberg’s theorem is hard. There is also an easier proof that Bool
and Nat are sets.



Hedberg’s theorem

Theorem

If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.

Note

Hedberg’s theorem is hard. There is also an easier proof that Bool
and Nat are sets.



Are all types sets?

Is there a type that is not a set?

Great question! It depends:

• In “spartan” type theory some types can’t be shown to be
sets.

• Assuming univalence, some types can be shown not to be sets.



Another set

Theorem

The type

hPropU :=
∑
X :U

isaprop(X )

is a set.

The proof relies on the univalence axiom for the unviverse U .

Exercise

How would you generalize the above statement to any h-level?
How would you attempt proving it?



Types that are not sets

Exercise

Let U be a univalent universe that contains the type Bool. Why is
U not a set?

Which property of Bool does the proof of the above result exploit?



Outline

1 Sets in UniMath

2 How to show that something is (not) a set?

3 Subsets and quotients

4 Set-level mathematics



Sets and propositions

Types representing properties of sets are usually propositions.

Example

Given f : X → Y ,

isInjective(f ) :=
∏

x ,x ′:X

f (x) = f (x ′)→ x = x ′

is not a proposition in general, but it is if X and Y are sets.



Sets and propositions

Types representing properties of sets are usually propositions.

Example

Given f : X → Y ,

isInjective(f ) :=
∏

x ,x ′:X

f (x) = f (x ′)→ x = x ′

is not a proposition in general, but it is if X and Y are sets.



Predicates on types

A subtype A on a type X is a map

A : X → hPropU

Exercise

Show that the type of subtypes of any type X is a set.

The carrier of a subtype A is the type of elements satisfying A:

carrier(A) :=
∑
x :X

A(x)



Predicates on types

A subtype A on a type X is a map

A : X → hPropU

Exercise

Show that the type of subtypes of any type X is a set.

The carrier of a subtype A is the type of elements satisfying A:

carrier(A) :=
∑
x :X

A(x)



Predicates and injections

There is a canonical map inclA : carrier(A)→ X

, namely

pr1 :
∑
x :X

A(X )→ X

Exercise

isaset(X )→ isInjective(inclA)



Predicates and injections

There is a canonical map inclA : carrier(A)→ X , namely

pr1 :
∑
x :X

A(X )→ X

Exercise

isaset(X )→ isInjective(inclA)



Predicates and injections

There is a canonical map inclA : carrier(A)→ X , namely

pr1 :
∑
x :X

A(X )→ X

Exercise

isaset(X )→ isInjective(inclA)



Predicates and injections

Conversely, given a map f : A→ X , we can form the function
χf : X → U given by

χf (x) :≡
∑
a:A

f (a) = x

Exercise

isaset(X )→ isInjective(f )→
∏
x :X

isaprop(χf (x))

(Hard) exercise

ξf and inclA establish an isomorphism between X → hPropU and
injections(X ) :≡

∑
A:U isaset(A)×

∑
f :A→X isInjective(f )



Predicates and injections

Conversely, given a map f : A→ X , we can form the function
χf : X → U given by

χf (x) :≡
∑
a:A

f (a) = x

Exercise

isaset(X )→ isInjective(f )→
∏
x :X

isaprop(χf (x))

(Hard) exercise

ξf and inclA establish an isomorphism between X → hPropU and
injections(X ) :≡

∑
A:U isaset(A)×

∑
f :A→X isInjective(f )



Predicates and injections

Conversely, given a map f : A→ X , we can form the function
χf : X → U given by

χf (x) :≡
∑
a:A

f (a) = x

Exercise

isaset(X )→ isInjective(f )→
∏
x :X

isaprop(χf (x))

(Hard) exercise

ξf and inclA establish an isomorphism between X → hPropU and
injections(X ) :≡

∑
A:U isaset(A)×

∑
f :A→X isInjective(f )



Relations on a type

A binary relation R on a type X is a map

R : X → X → hPropU

Exercise

Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
∏
x :X

R(x)(x)

Exercise

Formulate the properties of being symmetric, transitive, an
equivalence relation.



Relations on a type

A binary relation R on a type X is a map

R : X → X → hPropU

Exercise

Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
∏
x :X

R(x)(x)

Exercise

Formulate the properties of being symmetric, transitive, an
equivalence relation.



Relations on a type

A binary relation R on a type X is a map

R : X → X → hPropU

Exercise

Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
∏
x :X

R(x)(x)

Exercise

Formulate the properties of being symmetric, transitive, an
equivalence relation.



Relations on a type

A binary relation R on a type X is a map

R : X → X → hPropU

Exercise

Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
∏
x :X

R(x)(x)

Exercise

Formulate the properties of being symmetric, transitive, an
equivalence relation.



Set-level quotient

Given a set X and relation R on X , the quotient

X
p−→ X/R

is defined by the property that any compatible map f into a set Y
factors uniquely through p:

X

X/R Y

p f

∃! f ′

Exercise

Formulate this condition precisely.



The quotient set

We can define the quotient X/R of a set by an equivalence
relation as the set of equivalence classes.

First we define for a subtype A : X → hPropU

iseqclass(A) := ‖carrier(A)‖

×
∏
x ,y :A

Rxy → Ax → Ay

×
∏
x ,y :A

Ax → Ay → Rxy

Then we define

X/R :=
∑

A:X→hPropU

iseqclass(A)



The quotient set

We can define the quotient X/R of a set by an equivalence
relation as the set of equivalence classes.
First we define for a subtype A : X → hPropU

iseqclass(A) := ‖carrier(A)‖

×
∏
x ,y :A

Rxy → Ax → Ay

×
∏
x ,y :A

Ax → Ay → Rxy

Then we define

X/R :=
∑

A:X→hPropU

iseqclass(A)



The quotient set

We can define the quotient X/R of a set by an equivalence
relation as the set of equivalence classes.
First we define for a subtype A : X → hPropU

iseqclass(A) := ‖carrier(A)‖

×
∏
x ,y :A

Rxy → Ax → Ay

×
∏
x ,y :A

Ax → Ay → Rxy

Then we define

X/R :=
∑

A:X→hPropU

iseqclass(A)



Outline

1 Sets in UniMath

2 How to show that something is (not) a set?

3 Subsets and quotients

4 Set-level mathematics



Paths between pairs

Given B : A→ U and a, a′ : A and b : B(a) and b′ : B(a′),

(a, b) = (a′, b′) '
∑

p:a=a′

transportB
(
p, b

)
= b′

If B(x) is a proposition for any x : A, then this simplifies to

(a, b) = (a′, b′) ' a = a′

Exercise

Why?



Paths between pairs

Given B : A→ U and a, a′ : A and b : B(a) and b′ : B(a′),

(a, b) = (a′, b′) '
∑

p:a=a′

transportB
(
p, b

)
= b′

If B(x) is a proposition for any x : A, then this simplifies to

(a, b) = (a′, b′) ' a = a′

Exercise

Why?



Example: natural numbers

An even natural number is a pair consisting of a natural number
and a proof of its evenness.

iseven(n) :≡
∑
k:Nat

k + k = n evennat :≡
∑
n:Nat

iseven(n)

When comparing two even natural numbers, we want to compare
them as numbers:

(n, p) = (n′, p′) ' n = n′

The type iseven(n) hence should be a proposition.

Exercise

It is!



Example: natural numbers

An even natural number is a pair consisting of a natural number
and a proof of its evenness.

iseven(n) :≡
∑
k:Nat

k + k = n evennat :≡
∑
n:Nat

iseven(n)

When comparing two even natural numbers, we want to compare
them as numbers:

(n, p) = (n′, p′) ' n = n′

The type iseven(n) hence should be a proposition.

Exercise

It is!



Example: natural numbers

An even natural number is a pair consisting of a natural number
and a proof of its evenness.

iseven(n) :≡
∑
k:Nat

k + k = n evennat :≡
∑
n:Nat

iseven(n)

When comparing two even natural numbers, we want to compare
them as numbers:

(n, p) = (n′, p′) ' n = n′

The type iseven(n) hence should be a proposition.

Exercise

It is!



Example: natural numbers

An even natural number is a pair consisting of a natural number
and a proof of its evenness.

iseven(n) :≡
∑
k:Nat

k + k = n evennat :≡
∑
n:Nat

iseven(n)

When comparing two even natural numbers, we want to compare
them as numbers:

(n, p) = (n′, p′) ' n = n′

The type iseven(n) hence should be a proposition.

Exercise

It is!



Groups

Traditionally (in set theory), a group is a quadruple (G ,m, e, i) of

• a set G

• a multiplication m : G × G → G

• a unit e ∈ G

• an inverse i : G → G

subject to the usual axioms.



Groups in type theory

In type theory, a group is a (dependent) pair (data, proof ) where

• data is a quadruple (G ,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data, proof ) and (data′, proof ′) as
being the same if data is the same as data′.
This requires that the type encoding the group axioms be a
proposition.
This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise

Why?



Groups in type theory

In type theory, a group is a (dependent) pair (data, proof ) where

• data is a quadruple (G ,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data, proof ) and (data′, proof ′) as
being the same if data is the same as data′.

This requires that the type encoding the group axioms be a
proposition.
This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise

Why?



Groups in type theory

In type theory, a group is a (dependent) pair (data, proof ) where

• data is a quadruple (G ,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data, proof ) and (data′, proof ′) as
being the same if data is the same as data′.
This requires that the type encoding the group axioms be a
proposition.

This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise

Why?



Groups in type theory

In type theory, a group is a (dependent) pair (data, proof ) where

• data is a quadruple (G ,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data, proof ) and (data′, proof ′) as
being the same if data is the same as data′.
This requires that the type encoding the group axioms be a
proposition.
This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise

Why?



Group isomorphisms

The type of groups is

Grp :=
∑

X :hSet

GrpStructure(X )

A group isomorphism G → G ′ is

• a bijective function on the underlying sets X → X ′

• compatible with the group structures S and S ′ on X and X ′.



Identity is isomorphism for groups

G = G ′ ' (X ,S) = (X ′,S ′)

'
∑

p:X=X ′

transportGrpStructure(p,S) = S ′

'
∑

p:X=X ′

(transportY 7→(Y×Y→Y )(p,m) = m′)

× (transportY 7→(Y→Y )(p, i) = i ′)

× (transportY 7→(1→Y )(p, e) = e ′)

'
∑

f :X'X ′

(
f ◦m ◦ (f −1 × f −1) = m′

)
×
(
f ◦ i ◦ f −1 = i ′

)
× (f ◦ e = e ′)

' (G ∼= G ′)


	Sets in UniMath
	How to show that something is (not) a set?
	Subsets and quotients
	Set-level mathematics

