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Definition of set

iscontr(X ) :=
∑
x :X

∏
y :X

x = y

isaprop(X ) :=
∏
x ,y :X

x = y

isaset(X ) :=
∏
x ,y :X

isaprop(x = y)

A set is a type whose path types are all propositions.



Definition of h-Levels

isofhlevel(n,X ) : Nat→ U → hProp

isofhlevel(0,X ) := iscontr(X )

isofhlevel(S(n),X ) :=
∏

x ,x ′:X

isofhlevel(n, x = x ′)

Exercise (∏
X :U

isaprop(X )

)
= isofhlevel(1,X )

Hence:

A set is a type of hlevel 2.
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Topological intuition

Recall:

• Each type X is to be a thought of a space

• For two points a, b : X , the type a =X b is the space of paths
from a to b

Fact (from topology)

A (“nice”) space all of whose path spaces are contractible is
(homotopy-)equivalent to a discrete space.

This can be made more precise using the model in simplicial sets.
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Closure properties

• ∑
x :A B(x) is a set if A and all B(x) are

• A× B is a set if A and B are

• ∏
x :A B(x) is a set if all B(x) are

• A→ B is a set if B is

• Any property is a set

Exercise

Do you know

• a type that is a set?

• a type for which you don’t know (yet) whether it is a set?
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What are sets good for?

• Most “traditional” mathematics can be done in UniMath with
sets (groups, rings, topological spaces, etc.)

• Categories or the type of all groups (rings, etc.) have h-level 3.

• Higher category theory and synthetic homotopy theory require
higher types.
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Decidable equality

Definition

A type X is decidable if we can write a term of type

X + ¬X

Definition

A type X has decidable path-equality if we can write a term of
type ∏

x ,x ′:A

(x = x ′) + ¬(x = x ′)

(that is, if all its paths types are decidable)



Hedberg’s theorem

Theorem

If a type X has decidable equality, then it is a set.

In the problem session, we will show that Bool and Nat are sets.

Note

Hedberg’s theorem is hard. There is also an easier proof that Bool
and Nat are sets.
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Are all types sets?

Is there a type that is not a set?

Great question! It depends:

• In “spartan” type theory some types can’t be shown to be
sets.

• Assuming univalence, some types can be shown not to be sets.



Another set

Theorem

The type

hPropU :=
∑
X :U

isaprop(X )

is a set.

The proof relies on the univalence axiom for the unviverse U .

Exercise

How would you generalize the above statement to any h-level?
How would you attempt proving it?



Types that are not sets

Exercise

Let U be a univalent universe that contains the type Bool. Why is
U not a set?

Which property of Bool does the proof of the above result exploit?
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Sets and propositions

Types representing properties of sets are usually propositions.

Example

Given f : X → Y ,

isInjective(f ) :=
∏

x ,x ′:X

f (x) = f (x ′)→ x = x ′

is not a proposition in general, but it is if X and Y are sets.
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Predicates on types

A subtype A on a type X is a map

A : X → hPropU

Exercise

Show that the type of subtypes of any type X is a set.

The carrier of a subtype A is the type of elements satisfying A:

carrier(A) :=
∑
x :X

A(x)
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Predicates and injections

There is a canonical map inclA : carrier(A)→ X

, namely

pr1 :
∑
x :X

A(X )→ X

Exercise

isaset(X )→ isInjective(inclA)
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Predicates and injections

Conversely, given a map f : A→ X , we can form the function
χf : X → U given by

χf (x) :≡
∑
a:A

f (a) = x

Exercise

isaset(X )→ isInjective(f )→
∏
x :X

isaprop(χf (x))

(Hard) exercise

ξf and inclA establish an isomorphism between X → hPropU and
injections(X ) :≡

∑
A:U isaset(A)×

∑
f :A→X isInjective(f )
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Relations on a type

A binary relation R on a type X is a map

R : X → X → hPropU

Exercise

Show that the type of binary relations on X is a set.

Properties of such relations are defined as usual, e.g.,

reflexive(R) :=
∏
x :X

R(x)(x)

Exercise

Formulate the properties of being symmetric, transitive, an
equivalence relation.
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Set-level quotient

Given a set X and relation R on X , the quotient

X
p−→ X/R

is defined by the property that any compatible map f into a set Y
factors uniquely through p:

X

X/R Y

p f

∃! f ′

Exercise

Formulate this condition precisely.



The quotient set

We can define the quotient X/R of a set by an equivalence
relation as the set of equivalence classes.

First we define for a subtype A : X → hPropU

iseqclass(A) := ‖carrier(A)‖

×
∏
x ,y :A

Rxy → Ax → Ay

×
∏
x ,y :A

Ax → Ay → Rxy

Then we define

X/R :=
∑

A:X→hPropU

iseqclass(A)
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Paths between pairs

Given B : A→ U and a, a′ : A and b : B(a) and b′ : B(a′),

(a, b) = (a′, b′) '
∑

p:a=a′

transportB
(
p, b

)
= b′

If B(x) is a proposition for any x : A, then this simplifies to

(a, b) = (a′, b′) ' a = a′

Exercise

Why?
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Example: natural numbers

An even natural number is a pair consisting of a natural number
and a proof of its evenness.

iseven(n) :≡
∑
k:Nat

k + k = n evennat :≡
∑
n:Nat

iseven(n)

When comparing two even natural numbers, we want to compare
them as numbers:

(n, p) = (n′, p′) ' n = n′

The type iseven(n) hence should be a proposition.

Exercise

It is!
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Groups

Traditionally (in set theory), a group is a quadruple (G ,m, e, i) of

• a set G

• a multiplication m : G × G → G

• a unit e ∈ G

• an inverse i : G → G

subject to the usual axioms.



Groups in type theory

In type theory, a group is a (dependent) pair (data, proof ) where

• data is a quadruple (G ,m, e, i) as above

• p is a proof that these satisfy the usual axioms.

We want to regard two groups (data, proof ) and (data′, proof ′) as
being the same if data is the same as data′.
This requires that the type encoding the group axioms be a
proposition.
This is in turn guaranteed as long as the underlying type G is
required to be a set.

Exercise

Why?
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Group isomorphisms

The type of groups is

Grp :=
∑

X :hSet

GrpStructure(X )

A group isomorphism G → G ′ is

• a bijective function on the underlying sets X → X ′

• compatible with the group structures S and S ′ on X and X ′.



Identity is isomorphism for groups

G = G ′ ' (X ,S) = (X ′,S ′)

'
∑

p:X=X ′

transportGrpStructure(p,S) = S ′

'
∑

p:X=X ′

(transportY 7→(Y×Y→Y )(p,m) = m′)

× (transportY 7→(Y→Y )(p, i) = i ′)

× (transportY 7→(1→Y )(p, e) = e ′)

'
∑

f :X'X ′

(
f ◦m ◦ (f −1 × f −1) = m′

)
×
(
f ◦ i ◦ f −1 = i ′

)
× (f ◦ e = e ′)

' (G ∼= G ′)
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